Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T14:20:22.014Z Has data issue: false hasContentIssue false

Part V - Cognitive Control and Executive Functions

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. http://doi.org/10.3389/fnhum.2013.00246CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing versus cognitive control networks. Frontiers in Human Neuroscience, 8, 95.CrossRefGoogle Scholar
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional–anatomic fractionation of the brain’s default network. Neuron, 65, 550562.CrossRefGoogle ScholarPubMed
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a frontobasal–ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27, 1186011864. doi:10.1523/jneurosci.3644-07.2007CrossRefGoogle Scholar
Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10, 659669. http://doi.org/10.1038/nrn2667CrossRefGoogle ScholarPubMed
Battleday, R. M., & Brem, A.-K. (2015). Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. European Neuropsychopharmacology, 25, 135. http://doi.org/10.1016/j.euroneuro.2015.07.028CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, Article 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beversdorf, D. Q. (2013). Pharmacological effects on creativity. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 151173). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290. http://doi.org/10.1016/j.tics.2010.04.004CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957. http://doi.org/10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249. http://doi.org/10.1093/cercor/bhh126CrossRefGoogle ScholarPubMed
Chakravarty, A. (2011). De novo development of artistic creativity in Alzheimer’s disease. Annals of the Indian Academy of Neurology, 14, 291294. doi:10.4103/0972-2327.91953CrossRefGoogle ScholarPubMed
Chatterjee, A. (2006). The neuropsychology of visual art: Conferring capacity. International Review of Neurobiology, 74, 3949. doi:10.1016/s0074-7742(06)74003-xCrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115, 458465. http://doi.org/10.1016/j.cognition.2010.03.007CrossRefGoogle Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences USA, 106(21), 87198724.CrossRefGoogle ScholarPubMed
Chrysikou, E. G. (2006). When shoes become hammers: Goal-derived categorization training enhances problem solving performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 935942.Google ScholarPubMed
Chrysikou, E. G. (2014). Creative states: A cognitive neuroscience approach to understanding and improving creativity in design. In Gero, J. (Ed.), Studying Visual and Spatial Reasoning for Design Creativity (pp. 227243). New York, NY: Springer.Google Scholar
Chrysikou, E. G. (in press). Creativity. Stevens Handbook of Experimental Psychology and Neuroscience. New York, NY: Wiley.Google Scholar
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Non-invasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189.CrossRefGoogle Scholar
Chrysikou, E. G., Motyka, K., Nigro, C., Yang, S., & Thompson-Schill, S. L. (2016). Functional fixedness for object use in open-ended tasks depends on stimulus modality. Psychology of Aesthetics, Creativity, and the Arts, 10, 425435.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., & Thompson-Schill, S. L. (2011). Dissociable brains states linked to common and creative object use. Human Brain Mapping, 32, 665675.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Weber, M., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341355. doi:10.1016/j.neuropsychologia.2013.10.021.CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493501. http://doi.org/10.1016/j.tics.2013.08.006CrossRefGoogle ScholarPubMed
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: Computational insights into potential cognitive architectures. Trends in Neurosciences, 36, 268274. http://doi.org/10.1016/j.tins.2013.03.001CrossRefGoogle ScholarPubMed
Defeyter, M., & German, T. (2003). Acquiring an understanding of design: Evidence from children’s insight problem solving. Cognition, 89, 133155.CrossRefGoogle ScholarPubMed
De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29, 13591367.CrossRefGoogle ScholarPubMed
De Manzano, O., Cervenka, S., Karabanov, A., Fanke, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5, E10670.CrossRefGoogle ScholarPubMed
de Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Habert, M.-O. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dietrich, A. (2007a). The wavicle of creativity. Methods, 42, 12. http://doi.org/10.1016/j.ymeth.2007.03.006CrossRefGoogle ScholarPubMed
Dietrich, A. (2007b). Who’s afraid of a cognitive neuroscience of creativity? Methods, 42, 2227. http://doi.org/10.1016/j.ymeth.2006.12.009CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J. A., Tranel, D., & Cohen, N. J. (2009). Hippocampal amnesia disrupts verbal play and the creative use of language in social interaction. Aphasiology, 23, 926939. http://doi.org/10.1080/02687030802533748CrossRefGoogle ScholarPubMed
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149. http://doi.org/10.1002/hipo.22208CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. http://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014a). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014b). The creative brain. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 207231). Cambridge, MA: MIT Press.Google Scholar
Fink, A., Grabner, R., Benedek, M., & Neubauer, A. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 22412246. doi:10.1111/j. 1460–9568.2006.04751.xCrossRefGoogle ScholarPubMed
German, T. P., & Defeyter, M. A. (2000). Immunity to functional fixedness in young children. Psychonomic Bulletin & Review, 7, 707712.CrossRefGoogle ScholarPubMed
Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25, 2835. http://doi.org/10.1177/0963721415618485CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. I., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. doi:10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2016). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 112. http://doi.org/10.1093/cercor/bhw080Google Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465. http://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., … Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 10071014.CrossRefGoogle ScholarPubMed
Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpa, V., Alahuhta, S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839847.CrossRefGoogle ScholarPubMed
Heaton, P., Ludlow, A., & Roberson, D. (2008). When less is more: Poor discrimination but good colour memory in autism. Research in Autism Spectrum Disorders, 2, 147156.CrossRefGoogle Scholar
Heilman, K. M., & Acosta, L. M. (2013). Visual artistic creativity and the brain. Progress in Brain Research, 204, 1943. doi:10.1016/b978-0-444-63287-6.00002-6.CrossRefGoogle ScholarPubMed
Hélie, S., & Sun, R. (2010). Incubation, insight, and creative problem solving: A unified theory and a connectionist model. Psychological Review, 117, 9941024. http://doi.org/10.1037/a0019532CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. http://doi.org/10.3389/fnhum.2013.00330/abstractCrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, F. R., Chavez, R. C., & Haier, R. J. (2009). Neuroanatomy of creativity. Human Brain Mapping, 31, 398408. doi:10.1002/hbm.20874CrossRefGoogle Scholar
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 6388. doi:10.1016/j.brainresrev.2006.06.003CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. http://doi.org/10.1146/annurev-psych-010213-115154CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., … Jung-Beeman, M. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17, 882890.CrossRefGoogle ScholarPubMed
Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., … Fox, P. T. (2005). ALE meta-analysis, controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25, 155164. doi:10.1002/hbm.20136CrossRefGoogle ScholarPubMed
Limb, C., & Braun, A. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679. doi:10.1371/journal.pone.0001679CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y, Erkkinen, M. G., Swett, K. E., Egle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2, 834.CrossRefGoogle ScholarPubMed
Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Sciences USA, 109, 39793984.CrossRefGoogle ScholarPubMed
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 7482.CrossRefGoogle ScholarPubMed
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468. http://doi.org/10.1177/0956797615591863CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116(C), 232239.CrossRefGoogle ScholarPubMed
McCaffrey, T. (2012). Innovation relies on the obscure: A key to overcoming the classic problem of functional fixedness. Psychological Science, 23, 215218. http://doi.org/10.1177/0956797611429580CrossRefGoogle ScholarPubMed
Mehta, R., & Zhu, R. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 323, 12261229. http://doi.org/10.1126/science.1169144CrossRefGoogle ScholarPubMed
Midorikawa, A., & Kawamura, M. (2015). The emergence of artistic ability following traumatic brain injury. Neurocase, 21, 9094. doi:10.1080/13554794.2013.873058.CrossRefGoogle ScholarPubMed
Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., & Cotman, C. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51, 978981. doi:10.1212/wnl.51.4.978CrossRefGoogle ScholarPubMed
Miller, B. L., & Hou, C. E. (2004). Portraits of artists: Emergence of visual creativity in dementia. Archives of Neurology, 61, 842844. doi:10.1001/archneur.61. 6.842CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Midorikawa, A., & Kawamura, M. (2014). The emergence of artistic ability following traumatic brain injury. Neurocase, 21, 9094. doi:10.1080/13554794.2013.873058.CrossRefGoogle ScholarPubMed
Mohamed, A. D., & Lewis, C. R. (2014). Modafinil increases the latency of response in the Hayling sentence completion test in healthy volunteers: A randomised controlled trial. PLoS ONE, 9, e110639. http://doi.org/10.1371/journal.pone.0110639.s002CrossRefGoogle ScholarPubMed
Mölle, M., Marshall, , Wolf, L., Fehm, B., , H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology, 36, 95104.CrossRefGoogle ScholarPubMed
Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., & Hof, P. R. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences USA, 96, 52685273.CrossRefGoogle ScholarPubMed
Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 61566163. http://doi.org/10.1523/JNEUROSCI.4769-13.2014CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063. http://doi.org/10.1093/cercor/bhv130CrossRefGoogle ScholarPubMed
Popa, D., Popescu, A. T., & Pare, D. (2009). Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience, 29, 11911201.CrossRefGoogle ScholarPubMed
Pring, L., Ryder, N., Crane, L., & Hermlin, B. (2012). Creativity in savant artists with autism. Autism, 16, 4557. doi:10.1177/1362361311403783CrossRefGoogle ScholarPubMed
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110120.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. http://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 676682.CrossRefGoogle ScholarPubMed
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449476.CrossRefGoogle ScholarPubMed
Ramey, C. H., & Chrysikou, E. G. (2014). “Not in their right mind”: The relation of psychopathology to the quantity and quality of creative thought. Frontiers in Psychology, 5, 835839. doi:10.3389/fpsyg.2014.00835CrossRefGoogle Scholar
Rankin, K. P., Liu, A. A., Howard, S. M., Slama, H., Hou, C. E., Shuster, K., & Miller, B. L. (2007). A case-controlled study of altered visual art production in Alzheimer’s and FTLD. Cognitive Behavioral Neurology, 20, 4861. doi:10.1097/wnn.0b013e31803141ddCrossRefGoogle ScholarPubMed
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128, 28822890.CrossRefGoogle ScholarPubMed
Ritter, S. M., Damian, R. I., Simonton, D. K., van Baaren, R. B., Strick, M., Derks, J., & Dijksterhuis, A. (2012). Diversifying experiences enhance cognitive flexibility. Journal of Experimental Social Psychology, 48, 961964. http://doi.org/10.1016/j.jesp.2012.02.009CrossRefGoogle Scholar
Sacks, O. (2004). Autistic geniuses? We’re too ready to pathologize. Nature, 429, 241. doi:10.1038/429241cCrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22, 18141819.CrossRefGoogle ScholarPubMed
Schott, G. D. (2012). Pictures as a neurological tool: Lessons from enhanced and emergent artistry in brain disease. Brain, 135, 19471963. doi:10.1093/brain/awr314CrossRefGoogle ScholarPubMed
Seeley, W. W., Matthews, B. R., Crawford, R. K., Gorno-Tempini, M. L., Foti, D., Mackenzie, I. R., & Miller, B. L. (2008). Unravelling Boléro: Progressive aphasia, transmodal creativity and the right posterior neocortex. Brain, 131, 3949.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207218.CrossRefGoogle Scholar
Simis, M., Bravo, G. L., Boggio, P. S., Devido, M., Gagliardi, R. J., & Fregni, F. (2014). Transcranial direct current stimulation in de novo artistic ability after stroke. Neuromodulation, 17, 497501. doi:10.1111/ner.12140.CrossRefGoogle ScholarPubMed
Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.) (1995). The creative cognition approach. Cambridge, MA: MIT Press.Google Scholar
Snyder, A. (2009). Explaining and inducing savant skills: Privileged access to lower level, less-processed information. Philosophical Transactions of the Royal Society B, 364, 13991405.CrossRefGoogle ScholarPubMed
Snyder, A., Bahramali, H., Hawker, T., & Mitchell, D. J. (2006) Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception, 35, 837845.CrossRefGoogle ScholarPubMed
Snyder, A., Mulcahy, E., Taylor, J. L., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left frontotemporal lobe. Journal of Integrative Neuroscience, 2, 149158.CrossRefGoogle Scholar
Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510.CrossRefGoogle Scholar
Stafford, J. M., Jarrett, B. R., Miranda-Dominguez, O., Mills, B. D., Cain, N., Mihalas, S., … Fair, D. A. (2014). Large-scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy of Sciences USA, 111, 1874518750.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizumi, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L., Ramscar, M., & Chrysikou, E. G. (2009). Cognition without control: When a little frontal lobe goes a long way. Current Directions in Psychological Science, 18, 259263.CrossRefGoogle ScholarPubMed
Treffert, D. A. (2013). Savant syndrome: Realities, myths and misconceptions. Journal of Autism & Developmental Disorders, 44, 564571. doi:10.1007/s10803-013-1906-8CrossRefGoogle Scholar
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Human Brain Mapping, 33, 113. doi:10.1002/hbm.21186CrossRefGoogle ScholarPubMed
Vartanian, O., Bouak, F., & Caldwell, J. L., Cheung, B., Cupchik, G., Jobidon, M. E., … Smith, I. (2014). The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking. Frontiers in Human Neuroscience, 8, 214. http://doi.org/10.3389/fnhum.2014.00214/abstractCrossRefGoogle ScholarPubMed
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2007). Creative potential, attention, and speed of information processing. Personality and Individual Differences, 43, 14701480. http://doi.org/10.1016/j.paid.2007.04.027CrossRefGoogle Scholar
Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., … Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447, 8386.CrossRefGoogle ScholarPubMed
Viskontas, I. V., & Miller, B. L. (2013). Art and dementia: How degeneration of some brain regions can lead to new creative impulses. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 115132). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Ward, T. B. (2007). Creative cognition as a window on creativity. Methods, 42, 2837. http://doi.org/10.1016/j.ymeth.2006.12.002CrossRefGoogle ScholarPubMed
Weinberger, A. B., Green, A., & Chrysikou, E. G. (2017). Using transcranial direct current stimulation to enhance creative cognition: Interactions between task, polarity, and stimulation site. Frontiers in Human Neuroscience, 11, 246.CrossRefGoogle ScholarPubMed
Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: John Wiley & Sons.Google Scholar
Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143. http://doi.org/10.1037/a0017379CrossRefGoogle Scholar
Zaidel, D. W. (2014). Creativity, brain, and art: Biological and neurological considerations. Frontiers in Human Neuroscience, 8, 19. doi:10.3389/fnhum.2014.00389CrossRefGoogle ScholarPubMed

References

Abraham, A. (2014). Is there an inverted-U relationship between creativity and psychopathology? Frontiers in Psychology, 5, 750. doi:10.3389/fpsyg.2014.00750CrossRefGoogle ScholarPubMed
Abraham, A., & Windmann, S. (2008). Selective information processing advantages in creative cognition as a function of schizotypy. Creativity Research Journal, 20, 16. doi:10.1080/10400410701839819CrossRefGoogle Scholar
Acar, S., & Sen, S. (2013). A multilevel meta-analysis of the relationship between creativity and schizotypy. Psychology of Aesthetics, Creativity, and the Arts, 7, 214228. doi:10.1037/a0031975CrossRefGoogle Scholar
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. doi:10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Augustine, A. A., & Hemenover, S. H. (2009). On the relative effectiveness of affect regulation strategies: A meta-analysis. Cognition and Emotion, 23, 11811220. doi:10.1080/02699930802396556CrossRefGoogle Scholar
Averill, J. R. (1999). Individual differences in emotional creativity: Structure and correlates. Journal of Personality, 67, 331371. doi:10.1111/1467–6494.00058CrossRefGoogle ScholarPubMed
Averill, J. R., & Nunley, E. P. (1992). Voyages of the heart: Living an emotionally creative life. New York, NY: Free Press.Google Scholar
Baas, M., De Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 779806. doi:10.1037/a0012815CrossRefGoogle ScholarPubMed
Baas, M., Nijstad, B. A., Boot, N. C., & De Dreu, C. K. W. (2016). Mad genius revisited: Vulnerability to psychopathology, biobehavioral approach-avoidance, and creativity. Psychological Bulletin, 142, 668692. doi:10.1037/bul0000049CrossRefGoogle ScholarPubMed
Barrantes-Vidal, N. (2004). Creativity & madness revisited from current psychological perspectives. Journal of Consciousness Studies, 11, 5878.Google Scholar
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32, 439476. doi:10.1146/annurev.ps.32.020181.002255CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, B. S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. doi:10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. doi:10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E. V., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64C, 9298. doi:10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319. doi:10.1037/a0029171CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E. V., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861197. doi:10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. doi:10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383. doi:10.1016/j.intell.2014.05.007CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281. doi:10.1037/a0027059CrossRefGoogle Scholar
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289. doi:10.1002/jocb.35CrossRefGoogle Scholar
Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830842. doi:10.1016/j.neuroimage.2009.08.042CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712719. doi:10.1016/j.neuroimage.2009.08.042CrossRefGoogle ScholarPubMed
Brod, J. H. (1997). Creativity and schizotypy. In Claridge, G. (Ed.), Schizotypy. Implications for illness and health (pp. 274289). New York, NY: Oxford University Press. doi:10.1093/med:psych/9780198523536.003.0013CrossRefGoogle Scholar
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56, 144153.CrossRefGoogle ScholarPubMed
Cavanna, A. E. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583. doi:10.1093/brain/awl004CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., Kwapil, T. R., Eckblad, M., & Zinser, M. C. (1994). Putatively psychosis-prone subjects 10 years later. Journal of Abnormal Psychology, 103, 171183. doi:10.1037/0021-843X.103.2.171CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Weber, M. J., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341355. doi:10.1016/j.neuropsychologia.2013.10.021CrossRefGoogle ScholarPubMed
Chung, Y. S., Barch, D., & Strube, M. (2014). A meta-analysis of mentalizing impairments in adults with schizophrenia and autism spectrum disorder. Schizophrenia Bulletin, 40, 602616. doi:10.1093/schbul/sbt048CrossRefGoogle ScholarPubMed
Claridge, G., & Blakey, S. (2009). Schizotypy and affective temperament: Relationships with divergent thinking and creativity styles. Personality, Psychopathology, and Original Minds, 46, 820826. doi:10.1016/j.paid.2009.01.015Google Scholar
Collins, M. A., & Amabile, T. M. (1999). Motivation and creativity. In Sternberg, R. J (Ed.), Handbook of creativity (pp. 297312). Cambridge: Cambridge University Press.Google Scholar
Crespi, B., Leach, E., Dinsdale, N., Mokkonen, M., & Hurd, P. (2016). Imagination in human social cognition, autism, and psychotic-affective conditions. Cognition, 150, 181199. doi:10.1016/j.cognition.2016.02.001CrossRefGoogle ScholarPubMed
Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67, 219234. doi:10.1016/j.biopsycho.2004.03.008CrossRefGoogle Scholar
Dietrich, A. (2014). The mythconception of the mad genius. Frontiers in Psychology, 5, 79. doi:10.3389/fpsyg.2014.00079CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848. doi:10.1037/a0019749CrossRefGoogle ScholarPubMed
Duchêne, A., Graves, , , R. E., & Brugger, P. (1998). Schizotypal thinking and associative processing: A response commonality analysis of verbal fluency. Journal of Psychiatry & Neuroscience, 23, 5660.Google ScholarPubMed
Edl, S., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). Creativity and the Stroop interference effect. Personality and Individual Differences, 69, 3842. doi:10.1016/j.paid.2014.05.009CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. doi:10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178. doi:10.1207/s15327965pli0403_1CrossRefGoogle Scholar
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2, 290309. doi:10.1207/s15327957pspr0204_5CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123. doi:10.1016/j.neubiorev.2012.12.002CrossRefGoogle ScholarPubMed
Fink, A., Benedek, M., Unterrainer, H. F., Papousek, I., & Weiss, E. M. (2014). Creativity and psychopathology: Are there similar mental processes involved in creativity and in psychosis-proneness? Frontiers in Psychology, 5, 1211. doi:10.3389/fpsyg.2014.01211CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. The European Journal of Neuroscience, 23, 22412246. doi:10.1111/j.1460-9568.2006.04751.xCrossRefGoogle ScholarPubMed
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82, 233239. doi:10.1016/j.ijpsycho.2011.09.003CrossRefGoogle ScholarPubMed
Fink, A., Slamar Halbedl, M., Unterrainer, H. F., & Weiss, E. M. (2012). Creativity: Genius, madness, or a combination of both? Psychology of Aesthetics, Creativity, and the Arts, 6, 1118. doi:10.1037/a0024874CrossRefGoogle Scholar
Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., … Weiss, E. M. (2014). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, & Behavioral Neuroscience, 14, 378387. doi:10.3758/s13415-013-0210-6CrossRefGoogle ScholarPubMed
Fink, A., Weiss, E. M., Schwarzl, U., Weber, H., Loureiro de Assunção, V., Rominger, C., … Papousek, I. (2017). Creative ways to well-being: Reappraisal inventiveness in the context of anger evoking situations. Cognitive, Affective, and Behavioral Neuroscience, 17, 94105. doi:10.3758/s13415-016-0465-9CrossRefGoogle ScholarPubMed
Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10, 4858. doi:10.1038/nrn2536CrossRefGoogle ScholarPubMed
Garnefski, N., van Den Kommer, T., Kraaij, V., Teerds, J., Legerstee, J., & Onstein, E. (2002). The relationship between cognitive emotion regulation strategies and emotional problems: Comparison between a clinical and a non-clinical sample. European Journal of Personality, 16, 403420. doi:10.1002/per.458CrossRefGoogle Scholar
Gasper, K. (2004). Permission to seek freely? The effect of happy and sad moods on generating old and new ideas. Creativity Research Journal, 16, 215229. doi:10.1080/10400419.2004.9651454CrossRefGoogle Scholar
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625. doi:10.1348/096317907X173421CrossRefGoogle ScholarPubMed
Golden, C. J. (1975). The measurement of creativity by the Stroop color and word test. Journal of Personality Assessment, 39, 502506. doi:10.1207/s15327752jpa3905_9CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465. doi:10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Groborz, M., & Necka, E. (2003). Creativity and cognitive control: Explorations of generation and evaluation skills. Creativity Research Journal, 15, 183197. doi:10.1080/10400419.2003.9651411CrossRefGoogle Scholar
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2, 271299. doi:10.1037/1089-2680.2.3.271CrossRefGoogle Scholar
Gross, J. J. (2013). Emotion regulation: Taking stock and moving forward. Emotion, 13, 359365. doi:10.1037/a0032135CrossRefGoogle ScholarPubMed
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85, 348362. doi:10.1037/0022-3514.85.2.348CrossRefGoogle ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454. doi:10.1037/h0063487CrossRefGoogle ScholarPubMed
Hertel, P. (2004). Memory for emotional and nonemotional events in depression. In Reisberg, D. & Hertel, P. (Eds.), Memory and emotion (pp. 186216). Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780195158564.003.0006CrossRefGoogle Scholar
Holt, N. J. (2015). Schizotypy: A creative advantage? In Mason, O. & Claridge, G. (Eds.), Schizotypy. New dimensions (pp. 197214). London: Routledge.CrossRefGoogle Scholar
Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171178. doi:10.1016/j.intell.2015.01.012CrossRefGoogle Scholar
Jauk, E. V., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212221. doi:10.1016/j.intell.2013.03.003CrossRefGoogle ScholarPubMed
Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition & Emotion, 24, 281298. doi:10.1080/02699930903407948CrossRefGoogle ScholarPubMed
Jung, R.E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons”. Frontiers in Psychology, 5, 784. doi:10.3389/fpsyg.2014.00784CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. doi:10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Kalkstein, S., Hurford, I., & Gur, R. C. (2010). Neurocognition in schizophrenia. In Swerdlow, N. R. (Ed.), Behavioral neurobiology of schizophrenia and its treatment (pp. 373390). Berlin: Springer-Verlag. doi:10.1007/7854_2010_42CrossRefGoogle Scholar
Karlsson, J. L. (1970). Genetic association of giftedness and creativity with schizophrenia. Hereditas, 66, 177181. doi:10.1111/j.1601–5223.1970.tb02343.xCrossRefGoogle Scholar
Karlsson, J. L. (1984). Creative intelligence in relatives of mental patients. Hereditas, 100, 8386. doi:10.1111/j.1601–5223.1984.tb00108.xCrossRefGoogle ScholarPubMed
Kaufman, S. B., & Paul, E. S. (2014). Creativity and schizophrenia spectrum disorders across the arts and sciences. Frontiers in Psychology, 5, 1145. doi:10.3389/fpsyg.2014.01145CrossRefGoogle ScholarPubMed
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 6388. doi:10.1016/j.brainresrev.2006.06.003CrossRefGoogle ScholarPubMed
Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690. doi:10.1002/hbm.20633CrossRefGoogle ScholarPubMed
Kyaga, S., Landén, M., Boman, M., Hultman, C. M., Långström, N., & Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47, 8390. doi:10.1016/j.jpsychires.2012.09.010CrossRefGoogle ScholarPubMed
Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Långström, N., & Landén, M. (2011). Creativity and mental disorder: Family study of 300,000 people with severe mental disorder. The British Journal of Psychiatry, 199, 373379. doi:10.1192/bjp.bp.110.085316CrossRefGoogle Scholar
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York, NY: Springer.Google Scholar
Lenzenweger, M. F., & Korfine, L. (1992). Confirming the latent structure and base rate of schizotypy: A taxometric analysis. Journal of Abnormal Psychology, 101, 567571. doi:10.1037/0021-843X.101.3.567CrossRefGoogle ScholarPubMed
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 7482. doi:10.1016/j.cortex.2015.03.012CrossRefGoogle ScholarPubMed
Malooly, A. M., Genet, J. J., & Siemer, M. (2013). Individual differences in reappraisal effectiveness: The role of affective flexibility. Emotion, 13, 302313. doi:10.1037/a0029980CrossRefGoogle ScholarPubMed
McConaghy, N. (1989). Thought disorder or allusive thinking in the relatives of schizophrenics? A response to Callahan, Madsen, Saccuzzo, and Romney. The Journal of Nervous and Mental Disease, 177, 729734. doi:10.1097/00005053-198912000-00003CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232. doi:10.1037/h0048850CrossRefGoogle ScholarPubMed
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827838. doi:10.1037/h0041029CrossRefGoogle Scholar
Merten, T., & Fischer, I. (1999). Creativity, personality and word association responses: Associative behaviour in forty supposedly creative persons. Personality and Individual Differences, 27, 933942. doi:10.1016/S0191-8869(99)00042-2CrossRefGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi:10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi:10.1006/cogp.1999.0734CrossRefGoogle ScholarPubMed
Mohr, C., & Claridge, G. (2015). Schizotypy-do not worry, it is not all worrisome. Schizophrenia Bulletin, 41(Suppl 2), S436S443. doi:10.1093/schbul/sbu185CrossRefGoogle Scholar
Mohr, C., Graves, R. E., Gianotti, L. R. R., Pizzagalli, D., & Brugger, P. (2001). Loose but normal: A semantic association study. Journal of Psycholinguistic Research, 30, 475483. doi:10.1023/A:1010461429079CrossRefGoogle Scholar
Nelson, B., & Rawlings, D. (2010). Relating schizotypy and personality to the phenomenology of creativity. Schizophrenia Bulletin, 36, 388399. doi:10.1093/schbul/sbn098CrossRefGoogle Scholar
Nettle, D. (2006). Schizotypy and mental health amongst poets, visual artists, and mathematicians. Journal of Research in Personality, 40, 876890. doi:10.1016/j.jrp.2005.09.004CrossRefGoogle Scholar
Nitzburg, G. C., Burdick, K. E., Malhotra, A. K., & DeRosse, P. (2015). Social cognition in patients with schizophrenia spectrum and bipolar disorders with and without psychotic features. Schizophrenia Research: Cognition, 2, 27. doi:10.1016/j.scog.2014.12.003Google ScholarPubMed
O’Reilly, T., Dunbar, R., & Bentall, R. (2001). Schizotypy and creativity: An evolutionary connection? Personality and Individual Differences, 31, 10671078. doi:10.1016/S0191-8869(00)00204-XCrossRefGoogle Scholar
Pannells, T. C., & Claxton, A. F. (2008). Happiness, creative ideation, and locus of control. Creativity Research Journal, 20, 6771. doi:10.1080/10400410701842029CrossRefGoogle Scholar
Papousek, I., & Schulter, G. (2006). Individual differences in functional asymmetries of the cortical hemispheres: Revival of laterality research in emotion and psychopathology. Cognition, Brain, Behavior, 10, 269298.Google Scholar
Papousek, I., Schulter, G., Weiss, E. M., Samson, A. C., Freudenthaler, H. H., & Lackner, H. K. (2013). Frontal brain asymmetry and transient cardiovascular responses to the perception of humor. Biological Psychology, 93, 114121. doi:10.1016/j.biopsycho.2012.12.004CrossRefGoogle Scholar
Papousek, I., Weiss, E. M., Perchtold, C. M., Weber, H., Assunção, V. L. de, Schulter, G., … Fink, A. (2017). The capacity for generating cognitive reappraisals is reflected in asymmetric activation of frontal brain regions. Brain Imaging and Behavior, 11, 577590. doi:10.1007/s11682-016-9537-2CrossRefGoogle ScholarPubMed
Pe, M. L., Raes, F., Koval, P., Brans, K., Verduyn, P., & Kuppens, P. (2013). Interference resolution moderates the impact of rumination and reappraisal on affective experiences in daily life. Cognition and Emotion, 27, 492501. doi:10.1080/02699931.2012.719489CrossRefGoogle ScholarPubMed
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955. doi:10.1038/nn.4040CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682. doi:10.1073/pnas.98.2.676CrossRefGoogle ScholarPubMed
Rominger, C., Papousek, I., Fink, A., & Weiss, E. M. (2014). Enhancement of figural creativity by motor activation: Effects of unilateral hand contractions on creativity are moderated by positive schizotypy. Laterality, 19, 424438. doi:10.1080/1357650X.2013.858725CrossRefGoogle ScholarPubMed
Rominger, C., Weiss, E. M., Fink, A., Schulter, G., & Papousek, I. (2011). Allusive thinking (cognitive looseness) and the propensity to perceive “meaningful” coincidences. Personality and Individual Differences, 51, 10021006. doi:10.1016/j.paid.2011.08.012CrossRefGoogle Scholar
Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49, 891895. doi:10.1016/j.paid.2010.07.025CrossRefGoogle Scholar
Rowland, J. E., Hamilton, M. K., Lino, B. J., Ly, P., Denny, K., Hwang, E.-J., … Green, M. J. (2013). Cognitive regulation of negative affect in schizophrenia and bipolar disorder. Psychiatry Research, 208, 2128. doi:10.1016/j.psychres.2013.02.021CrossRefGoogle ScholarPubMed
Runco, M. A. (2010). Divergent thinking, creativity, and ideation. In Kaufman, J. C. & Sternberg, R. J (Eds.), The Cambridge handbook of creativity (pp. 413446). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511763205.026CrossRefGoogle Scholar
Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., … Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. The European Journal of Neuroscience, 22, 29172926. doi:10.1111/j.1460-9568.2005.04482.xCrossRefGoogle ScholarPubMed
Schmeichel, B. J., Volokhov, R. N., & Demaree, H. A. (2008). Working memory capacity and the self-regulation of emotional expression and experience. Journal of Personality and Social Psychology, 95, 15261540. doi:10.1037/a0013345CrossRefGoogle ScholarPubMed
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310. doi:10.3389/fnhum.2014.00310CrossRefGoogle ScholarPubMed
Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects. American Psychologist, 55, 151158. doi:10.1037/0003-066X.55.1.151CrossRefGoogle ScholarPubMed
Sowden, P. T., Pringle, A., & Gabora, L. (2014). The shifting sands of creative thinking: Connections to dual-process theory. Thinking and Reasoning, 21, 4060. doi:10.1080/13546783.2014.885464CrossRefGoogle Scholar
Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2014). Resting and task-elicited prefrontal EEG alpha asymmetry in depression: Support for the capability model. Psychophysiology, 51, 446455. doi:10.1111/psyp.12191CrossRefGoogle ScholarPubMed
Suga, M., Yamasue, H., Abe, O., Yamasaki, S., Yamada, H., Inoue, H., … Kasai, K. (2010). Reduced gray matter volume of Brodmann’s Area 45 is associated with severe psychotic symptoms in patients with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 260, 465473. doi:10.1007/s00406-009-0094-1CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687. doi:10.1016/j.neuroimage.2010.11.052CrossRefGoogle ScholarPubMed
von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301313. doi:10.1016/S0167-8760(00)00172-0CrossRefGoogle Scholar
Ward, T. (2007). Creative cognition as a window on creativity. Methods, 42, 2837. doi:10.1016/j.ymeth.2006.12.002CrossRefGoogle ScholarPubMed
Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138, 775808. doi:10.1037/a0027600CrossRefGoogle ScholarPubMed
Weber, H., Loureiro de Assunção, V., Martin, , Westmeyer, C., , H., & Geisler, F. C. (2014). Reappraisal inventiveness: The ability to create different reappraisals of critical situations. Cognition and Emotion, 28, 345360. doi:10.1080/02699931.2013.832152CrossRefGoogle ScholarPubMed
Weisberg, R. W. (1999). Creativity and knowledge: A challenge to theories. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 226250). Cambridge: Cambridge University Press.Google Scholar
Weiss, E. M., Hofer, A., Golaszewski, S., Siedentopf, C., Felber, S., & Fleischhacker, W. W. (2006). Language lateralization in unmedicated patients during an acute episode of schizophrenia: A functional MRI study. Psychiatry Research: Neuroimaging, 146, 185190. doi:10.1016/j.pscychresns.2005.11.003CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., … Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 12791284. doi:10.1073/pnas.0809141106CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143. doi:10.1037/a0017379CrossRefGoogle Scholar
Zabelina, D. L., Robinson, M. D., Council, J. R., & Bresin, K. (2012). Patterning and nonpatterning in creative cognition: Insights from performance in a random number generation task. Psychology of Aesthetics, Creativity, and the Arts, 6, 137145. doi:10.1037/a0025452CrossRefGoogle Scholar

References

Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95. http://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A., Beudt, S., Ott, D. V. M., & Yves von Cramon, D. (2012). Creative cognition and the brain: Dissociations between frontal, parietal–temporal and basal ganglia groups. Brain Research, 1482, 5570. http://doi.org/10.1016/j.brainres.2012.09.007CrossRefGoogle ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917. http://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Acar, S., & Runco, M. A. (2014). Assessing Associative Distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26, 229238. http://doi.org/10.1080/10400419.2014.901095CrossRefGoogle Scholar
Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23, 109118. http://doi.org/10.1080/10400419.2011.571183CrossRefGoogle Scholar
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335. http://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance: The brain’s default network. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle Scholar
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. http://doi.org/10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193200.CrossRefGoogle ScholarPubMed
Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, , , R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907918.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23, 11171122. http://doi.org/10.1177/0956797612446024CrossRefGoogle ScholarPubMed
Bar, M., Aminoff, E., Mason, M., & Fenske, M. (2007). The units of thought. Hippocampus, 17, 420428.CrossRefGoogle ScholarPubMed
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348360. http://doi.org/10.1016/j.tics.2013.04.010CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, B. S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. http://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2014). The role of associative and executive processes in creative cognition. Memory and Cognition, 42, 11861197.CrossRefGoogle Scholar
Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 1120.CrossRefGoogle ScholarPubMed
Beketayev, K., & Runco, M. A. (2016). Scoring divergent thinking tests by computer with a semantics-based algorithm. European Journal of Psychology, 12, 210220.CrossRefGoogle ScholarPubMed
Bendetowicz, D., Urbanski, M., Aichelburg, C., Levy, R., & Volle, E. (2017). Brain morphometry predicts individual creative potential and the ability to combine remote ideas. Cortex, 86, 216229. doi:10.1016/j.cortex.2016.10.021.CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. http://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959. http://doi.org/10.1038/srep22959CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2013). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133. http://doi.org/10.1016/j.neuroimage.2013.11.021CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281. http://doi.org/10.1037/a0027059CrossRefGoogle Scholar
Benedek, M., Muhlmann, C., Jauk, E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349. http://doi.org/10.1037/a0033644CrossRefGoogle ScholarPubMed
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289. http://doi.org/10.1002/jocb.35CrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where ss the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. http://doi.org/10.1093/cercor/bhp055CrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and dynamics. Entropy, 12, 12641302. http://doi.org/10.3390/e12051264CrossRefGoogle Scholar
Bossomaier, T., Harré, M., Knittel, , , A., & Snyder, A. (2009). A semantic network approach to the creativity quotien (CQ). Creativity Research Journal, 21, 6471.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Burgess, P. W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 22462257. http://doi.org/10.1016/j.neuropsychologia.2011.02.014CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506. http://doi.org/10.1037/0022-3514.85.3.499CrossRefGoogle ScholarPubMed
Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016). Inhibitory control as a core process of creative problem solving and idea generation from childhood to adulthood: Inhibitory control as a core process of creative problem solving. New Directions for Child and Adolescent Development, 151, 6172. http://doi.org/10.1002/cad.20153CrossRefGoogle Scholar
Catani, M., Dell’Acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience & Biobehavioral Reviews, 37, 17241737. http://doi.org/10.1016/j.neubiorev.2013.07.001CrossRefGoogle ScholarPubMed
Catani, M., & Thiebaut de Schotten, M. (2012). Atlas of human brain connections. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21, 19801987. http://doi.org/10.1162/jocn.2008.21143CrossRefGoogle ScholarPubMed
Changeux, J.-P., Damasio, A. R., Singer, W., & Christen, Y. (2005). Creation, art and the brain. In Neurobiology of human values (pp. 111). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Chavez-Eakle, R. A., Graff-Guerrero, A., García-Reyna, J.-C., Vaugier, , , V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. NeuroImage, 38, 519528. http://doi.org/10.1016/j.neuroimage.2007.07.059CrossRefGoogle ScholarPubMed
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., … Etkin, A. (2013). Causal interactions between frontoparietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences, 110, 1994419949. http://doi.org/10.1073/pnas.1311772110CrossRefGoogle ScholarPubMed
Chen, Q., Wei, D., Li, W., Yang, W., Li, H., Lei, Q., … Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. NeuroImage, 102, 474483. http://doi.org/10.1016/j.neuroimage.2014.08.008CrossRefGoogle ScholarPubMed
Chen, Q.-L., Xu, T., Yang, W.-J., Li, Y.-D., Sun, J.-Z., Wang, K.-C., … Qiu, J. (2015). Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia, 75, 441449. http://doi.org/10.1016/j.neuropsychologia.2015.07.001CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2012). More creative through positive mood? Not everyone! Frontiers in Human Neuroscience, 6, 319. http://doi.org/10.3389/fnhum.2012.00319Google Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the USA, 106, 87198724. http://doi.org/10.1073/pnas.0900234106CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718731.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thomspon-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189. http://doi.org/10.1080/17588928.2013.768221CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355. http://doi.org/10.1038/nn.3470CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, 403. http://doi.org/10.3389/fnhum.2015.00403CrossRefGoogle Scholar
Cousijn, J., Zanolie, K., Munsters, R. J. M., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between resting state connectivity and creativity in adolescents before and after training. PLoS ONE, 9, e105780. http://doi.org/10.1371/journal.pone.0105780CrossRefGoogle ScholarPubMed
Davelaar, E. J. (2015). Semantic search in the Remote Associates Test. Topics in Cognitive Science, 7, 494512. http://doi.org/10.1111/tops.12146CrossRefGoogle ScholarPubMed
Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I., … Jefferies, E. (2016). Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with goal-oriented cognition. NeuroImage, 137, 165177. http://doi.org/10.1016/j.neuroimage.2016.05.051CrossRefGoogle ScholarPubMed
De Deyne, S., Kenett, Y. N., Anaki, D., Faust, M., & Navarro, D. (2016). Large-scale network representations of semantics in the mental lexicon. In Jones, M. N. (Ed.), Big data in cognitive science: From methods to insights. Hove: Psychology Press.Google Scholar
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45, 480498. http://doi.org/10.3758/s13428-012-0260-7CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669. http://doi.org/10.1177/0146167211435795CrossRefGoogle ScholarPubMed
De Neys, W. (2006). Automatic–heuristic and executive–analytic processing during reasoning: Chronometric and dual-task considerations. The Quarterly Journal of Experimental Psychology, 59, 10701100. http://doi.org/10.1080/02724980543000123CrossRefGoogle ScholarPubMed
De Souza, L. C., Guimarães, H. C., Teixeira, , Caramelli, A. L., Levy, P., Dubois, R., , B., & Volle, E. (2014). Frontal lobe neurology and the creative mind. Frontiers in Psychology, 5, 761. http://doi.org/10.3389/fpsyg.2014.00761CrossRefGoogle ScholarPubMed
De Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Levy, R. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742. http://doi.org/10.1016/j.neuropsychologia.2010.09.010CrossRefGoogle ScholarPubMed
De Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130521. http://doi.org/10.1098/rstb.2013.0521CrossRefGoogle ScholarPubMed
Demblon, J., Bahri, M. A., & D’Argembeau, A. (2016). Neural correlates of event clusters in past and future thoughts: How the brain integrates specific episodes with autobiographical knowledge. NeuroImage, 127, 257266. http://doi.org/10.1016/j.neuroimage.2015.11.062CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15, 135146. http://doi.org/10.1016/j.concog.2005.04.007CrossRefGoogle ScholarPubMed
Dorfman, L., Martindale, C., Gassimova, V., & Vartanian, O. (2008). Creativity and speed of information processing: A double dissociation involving elementary versus inhibitory cognitive tasks. Personality and Individual Differences, 44, 13821390. http://doi.org/10.1016/j.paid.2007.12.006CrossRefGoogle Scholar
Dumas, D., & Dunbar, K. N. (2014). Understanding fluency and originality: A latent variable perspective. Thinking Skills and Creativity, 14, 5667. http://doi.org/10.1016/j.tsc.2014.09.003CrossRefGoogle Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179. http://doi.org/10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Durso, F. T., Rea, C. B., & Dayton, T. (1994). Graph-theoretic confirmation of restructuring during insight. Psychological Science, 5, 9497.CrossRefGoogle Scholar
Edl, S., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). Creativity and the Stroop interference effect. Personality and Individual Differences, 69, 3842. http://doi.org/10.1016/j.paid.2014.05.009CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2011). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. http://doi.org/16/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Eustache, F., Viard, A., & Desgranges, B. (2016). The MNESIS model: Memory systems and processes, identity and future thinking. Neuropsychologia, 87, 96109. http://doi.org/10.1016/j.neuropsychologia.2016.05.006CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454459. http://doi.org/10.1016/j.tics.2003.08.012CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278. http://doi.org/10.1146/annurev.psych.59.103006.093629CrossRefGoogle ScholarPubMed
Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8, 223241. http://doi.org/10.1177/1745691612460685CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178. http://doi.org/10.1207/s15327965pli0403_1CrossRefGoogle Scholar
Faust, M., & Kenett, Y. N. (2014). Rigidity, chaos and integration: Hemispheric interaction and individual differences in metaphor comprehension. Frontiers in Human Neuroscience, 8, 511. http://doi.org/10.3389/fnhum.2014.00511CrossRefGoogle ScholarPubMed
Faust, M., & Lavidor, M. (2003). Semantically convergent and semantically divergent priming in the cerebral hemispheres: Lexical decision and semantic judgment. Cognitive Brain Research, 17, 585597. http://doi.org/10.1016/S0926-6410(03)00172-1CrossRefGoogle ScholarPubMed
Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110, 1661616621. http://doi.org/10.1073/pnas.1315235110CrossRefGoogle ScholarPubMed
Ferrand, L., & Alario, F. X. (1998). Normes d’associations verbales pour 366 noms d’objets concrets. L’Année Psychologique, 98, 659670.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2013). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111123. http://doi.org/10.1016/j.neubiorev.2012.12.002CrossRefGoogle Scholar
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2013). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 19, 12631269. http://doi.org/10.1007/s00429-013-0564-0Google Scholar
Forster, E. A., & Dunbar, K. N. (2009). Creativity evaluation through latent semantic analysis. In Proceedings of the Annual Conference of the Cognitive Science Society (pp. 602607). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532. http://doi.org/10.1016/j.intell.2016.03.005CrossRefGoogle Scholar
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621. http://doi.org/10.1016/j.neuroimage.2015.02.039CrossRefGoogle ScholarPubMed
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204. doi:10.1016/j.cortex.2016.04.023.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50, 531534.CrossRefGoogle ScholarPubMed
Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 113. http://doi.org/10.1080/10400410903579494CrossRefGoogle Scholar
Gabora, L., & Kauffman, S. (2015). Toward an evolutionary-predictive foundation for creativity: Commentary on “Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials” by Arne Dietrich and Hilde Haider, 2014. Psychonomic Bulletin & Review, 23, 632639. http://doi.org/10.3758/s13423-015-0925-1CrossRefGoogle Scholar
Gilbert, S. J., Gonen-Yaacovi, G., Benoit, R. G., Volle, E., & Burgess, P. W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 359367. http://doi.org/10.1016/j.neuroimage.2010.07.032CrossRefGoogle ScholarPubMed
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625. http://doi.org/10.1348/096317907X173421CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., Souza, L. C. de, Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465. http://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Goñi, J., Arrondo, G., Sepulcre, J., Martincorena, I., Mendizábal, N. V. de, Corominas-Murtra, B., … Villoslada, P. (2011). The semantic organization of the animal category: Evidence from semantic verbal fluency and network theory. Cognitive Processing, 12, 183196. http://doi.org/10.1007/s10339-010-0372-xCrossRefGoogle ScholarPubMed
Goñi, J., Martincorena, , Corominas-Murtra, I., Arrondo, B., Ardanza-Trevijano, G., , S., & Villoslada, P. (2010). Switcher-random-walks: A cognitive-inspired mechanism for network exploration. International Journal of Bifurcation and Chaos, 20, 913922. http://doi.org/10.1142/S0218127410026204CrossRefGoogle Scholar
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. http://doi.org/10.1016/j.neuroimage.2014.05.052CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state: Neuroimaging Augmented State Creativity. Human Brain Mapping, 36, 923934. http://doi.org/10.1002/hbm.22676CrossRefGoogle Scholar
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. http://doi.org/10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 264272. http://doi.org/10.1037/a0025764CrossRefGoogle ScholarPubMed
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 7278. http://doi.org/10.1093/cercor/bhn059CrossRefGoogle ScholarPubMed
Gruszka, A., & Necka, E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research Journal, 14, 193205.CrossRefGoogle Scholar
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454. http://doi.org/10.1037/h0063487CrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.Google Scholar
Gupta, N., Jang, Y., Mednick, S. C., & Huber, D. E. (2012). The road not taken: Creative solutions require avoidance of high-frequency responses. Psychological Science, 23, 288294. http://doi.org/10.1177/0956797611429710CrossRefGoogle Scholar
Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 42594264.CrossRefGoogle ScholarPubMed
Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44, 25472557. http://doi.org/10.1016/j.neuropsychologia.2006.03.035CrossRefGoogle ScholarPubMed
Hobeika, L., Diard-Detoeuf, C., Garcin, B., Levy, R., & Volle, E. (2016). General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies. Human Brain Mapping, 37, 19531969.CrossRefGoogle ScholarPubMed
Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Brain Research Cognitive Brain Research, 25, 240250.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320. http://doi.org/10.1016/j.neuroimage.2015.02.002CrossRefGoogle ScholarPubMed
Jones, L. L., & Estes, Z. (2015). Convergent and divergent thinking in verbal analogy. Thinking & Reasoning, 21, 473500. http://doi.org/10.1080/13546783.2015.1036120CrossRefGoogle Scholar
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons.Frontiers in Psychology, 5, 784. doi:10.3389/fpsyg.2014.00784CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, e9818. http://doi.org/10.1371/journal.pone.0009818CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioural and Brain Sciences, 30, 135154.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), The neuroscience of creativity (pp. 233254). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. http://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409. http://doi.org/10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Jung, R. E., Wertz, C. J., Meadows, C. A., Ryman, S. G., Vakhtin, A. A., & Flores, R. A. (2015). Quantity yields quality when it comes to creativity: A brain and behavioral test of the equal-odds rule. Frontiers in Psychology, 6, 864. http://doi.org/10.3389/fpsyg.2015.00864CrossRefGoogle ScholarPubMed
Kahneman, D. (2012). Thinking, fast and slow. London: Penguin.Google Scholar
Kaufman, J. C., & Baer, J. (2012). Beyond new and appropriate: Who decides what is creative? Creativity Research Journal, 24, 8391. http://doi.org/10.1080/10400419.2012.649237CrossRefGoogle Scholar
Kenett, Y., & Austerweil, J. (2016). Examining search processes in low and high creative individuals with random walks. In Papafragou, A., Grodner, D., Mirman, D., & Trueswell, J. C. (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (pp. 313318). Austin, TX: Cognitive Science Society.Google Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407. http://doi.org/10.3389/fnhum.2014.00407CrossRefGoogle ScholarPubMed
Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. http://dx.doi.org/10.1037/aca0000056CrossRefGoogle Scholar
Kenett, Y. N., Gold, R., & Faust, M. (2016). The hyper-modular associative mind: A computational analysis of associative responses of persons with Asperger Syndrome. Language and Speech, 59, 297317. http://doi.org/10.1177/0023830915589397CrossRefGoogle ScholarPubMed
Kenett, Y. N., Kenett, D. Y., Ben-Jacob, E., & Faust, M. (2011). Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PLoS ONE, 6, e23912. http://doi.org/10.1371/journal.pone.0023912CrossRefGoogle ScholarPubMed
Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage, 50, 16481657. http://doi.org/10.1016/j.neuroimage.2010.01.051CrossRefGoogle ScholarPubMed
Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 3546. http://doi.org/10.1016/j.neuropsychologia.2015.11.006CrossRefGoogle ScholarPubMed
Kim, K. (2008). Meta-analyses of the relationship of creative achievement to both IQ and divergent thinking test scores. The Journal of Creative Behavior, 42, 106130.CrossRefGoogle Scholar
Kim, K. H. (2006). Can we trust creativity TTSTs? A review of the Torrance Tests of Creative Thinking (TTCT). Creativity Research Journal, 18, 314. http://doi.org/10.1207/s15326934crj1801_2CrossRefGoogle Scholar
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185.CrossRefGoogle ScholarPubMed
Konishi, S., Hirose, S., Jimura, K., Chikazoe, J., Watanabe, T., Kimura, H. M., & Miyashita, Y. (2010). Medial prefrontal activity during shifting under novel situations. Neuroscience Letters, 484, 182186. http://doi.org/16/j.neulet.2010.08.047CrossRefGoogle ScholarPubMed
Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In Kaufman, J. C., & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 2047). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kühn, S., Ritter, S. M., Müller, B. C., Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Kveraga, K., Ghuman, A. S., Kassam, K. S., Aminoff, E. A., Hamalainen, M. S., Chaumon, M., & Bar, M. (2011). Early onset of neural synchronization in the contextual associations network. Proceedings of the National Academy of Sciences, 108, 33893394. http://doi.org/10.1073/pnas.1013760108CrossRefGoogle ScholarPubMed
Landauer, T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320. http://doi.org/10.1016/j.intell.2013.04.008CrossRefGoogle Scholar
Lerner, A. J., Ogrocki, P. K., & Thomas, P. J. (2009). Network graph analysis of category fluency testing. Cognitive and Behavioral Neurology, 22, 4552.CrossRefGoogle ScholarPubMed
Lubart, T., Mouchiroud, C., Tordjman, S., & Zenasni, F. (2015). Psychologie de la créativité (2nd ed.). Paris: Armand Colin.Google Scholar
Maki, W. S., & Buchanan, E. (2008). Latent structure in measures of associative, semantic, and thematic knowledge. Psychonomic Bulletin & Review, 15, 598603.CrossRefGoogle ScholarPubMed
Martindale, C., & Mines, D. (1975). Creativity and cortical activation during creative, intellectual and eeg feedback tasks. Biological Psychology, 3, 91100. http://doi.org/10.1016/0301-0511(75)90011-3CrossRefGoogle ScholarPubMed
Marupaka, N., Iyer, L. R., & Minai, A. A. (2012). Connectivity and thought: The influence of semantic network structure in a neurodynamical model of thinking. Neural Networks, 32, 147. http://doi.org/10.1016/j.neunet.2012.02.004CrossRefGoogle Scholar
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393395.CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2014). Generating original ideas: The neural underpinning of originality. NeuroImage, 64, 157168.Google Scholar
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. http://doi.org/10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
McDonald, C. R., Crosson, B., Valenstein, E., & Bowers, D. (2001). Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase, 7, 407417. http://doi.org/10.1076/neur.7.5.407.16250CrossRefGoogle Scholar
Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. Journal of Abnormal Psychology, 69, 511515.CrossRefGoogle ScholarPubMed
Mednick, M. T., Mednick, S. A., & Mednick, E. V. (1964). Incubation of creative performance and specific associative priming. Journal of Abnormal Psychology, 69, 8488.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance 1. Journal of Personality, 44(2), 341369. http://doi.org/10.1111/j.1467-6494.1976.tb00127CrossRefGoogle Scholar
Mendez, M. F. (2004). Dementia as a window to the neurology of art. Medical Hypotheses, 63, 17.CrossRefGoogle Scholar
Merten, T., & Fischer, I. (1999). Creativity, personality and word association responses: Associative behaviour in forty supposedly creative persons. Personality and Individual Differences, 27, 933942. http://doi.org/10.1016/S0191-8869(99)00042-2CrossRefGoogle Scholar
Miller, L. A., & Tippett, L. J. (1996). Effects of focal brain lesions on visual problem-solving. Neuropsychologia, 34, 387398. http://doi.org/10.1016/0028-3932(95)00116-6CrossRefGoogle ScholarPubMed
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8, 663. http://doi.org/10.3389/fnhum.2014.00663CrossRefGoogle ScholarPubMed
Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic memory. Cognitive Science, 37, 125145. http://doi.org/10.1111/cogs.12013CrossRefGoogle ScholarPubMed
Nelson, D. L., Dyrdal, G. M., & Goodmon, L. B. (2005). What is preexisting strength? Predicting free association probabilities, similarity ratings, and cued recall probabilities. Psychonomic Bulletin & Review, 12, 711719.CrossRefGoogle ScholarPubMed
Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 3477.CrossRefGoogle Scholar
Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25, 18241850.CrossRefGoogle ScholarPubMed
Northof