Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-25T17:39:10.740Z Has data issue: false hasContentIssue false

Part VIII - Artistic and Aesthetic Processes

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abell, A. M. (1955). Talks with great composers. New York, NY: Philosophical Library.Google Scholar
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18, 251270.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional–anatomic fractionation of the brain’s default network. Neuron, 65, 550562.CrossRefGoogle ScholarPubMed
Baggott, M. J. (2015). Psychedelics and creativity: A review of the quantitative literature. PeerJ PrePrints, 3, e1468.Google Scholar
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., … Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. Journal of Comparative Neurology, 256, 211228.CrossRefGoogle ScholarPubMed
Bashwiner, D. M. (2010). Musical emotion: Toward a biologically grounded theory (Doctoral Dissertation). Retrieved from ProQuest Dissertations and Theses A&I (Order No. 3408503).Google Scholar
Bashwiner, D. M., Wertz, C. J., Flores, R. A., & Jung, R. E. (2016). Musical creativity “revealed” in brain structure: Interplay between motor, default mode, and limbic networks. Scientific Reports, 6.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830842.CrossRefGoogle ScholarPubMed
Bent, I. (1984). The ‘compositional process’ in music theory 1713–1850. Music Analysis, 3(1), 2955.CrossRefGoogle Scholar
Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712719.CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: The neural correlates of musical improvisation. NeuroImage, 41, 535543.CrossRefGoogle ScholarPubMed
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 1181811823.CrossRefGoogle ScholarPubMed
Brown, S., Martinez, M. J., Hodges, D. A., Fox, P. T., & Parsons, L. M. (2004). The song system of the human brain. Cognitive Brain Research, 20, 363375.CrossRefGoogle ScholarPubMed
Brown, S., Martinez, M. J., & Parsons, L. M. (2006). The neural basis of human dance. Cerebral Cortex, 16, 11571167.CrossRefGoogle ScholarPubMed
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 28442854.CrossRefGoogle ScholarPubMed
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Moving on time: Brain network for auditory–motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20, 226239.CrossRefGoogle Scholar
Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32, 17711781.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125151.CrossRefGoogle ScholarPubMed
de Manzano, Ö., & Ullén, F. (2012a). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272280.CrossRefGoogle ScholarPubMed
de Manzano, Ö., & Ullén, F. (2012b). Goal-independent mechanisms for free response generation: Creative and pseudo-random performance share neural substrates. NeuroImage, 59, 772780.CrossRefGoogle ScholarPubMed
Desseilles, M., Dang-Vu, T. T., Sterpenich, V., & Schwartz, S. (2011). Cognitive and emotional processes during dreaming: A neuroimaging view. Consciousness and Cognition, 20, 9981008.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231256.CrossRefGoogle ScholarPubMed
Dietrich, A., & Haider, H. (2015). Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials. Psychonomic Bulletin & Review, 22, 897915.CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822.CrossRefGoogle ScholarPubMed
Dikaya, L. A., & Skirtach, I. A. (2015). Neurophysiological correlates of musical creativity: The example of improvisation. Psychology in Russia, 8, 8497.Google Scholar
Donnay, G. F., Rankin, S. K., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2014). Neural substrates of interactive musical improvisation: An FMRI study of ‘trading fours’ in jazz. PLoS ONE, 9, e88665.CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794.CrossRefGoogle ScholarPubMed
Elmer, S., Hänggi, J., Meyer, M., & Jäncke, L. (2013). Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds. Cortex, 49, 28122821.CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1316, 87104.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2011). Brain illness and creativity: Mechanisms and treatment risks. The Canadian Journal of Psychiatry, 56, 132143.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 96739678.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893906.CrossRefGoogle ScholarPubMed
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
Herholz, S. C., Halpern, A. R., & Zatorre, R. J. (2012). Neuronal correlates of perception, imagery, and memory for familiar tunes. Journal of Cognitive Neuroscience, 24, 13821397.CrossRefGoogle ScholarPubMed
Hobson, J. A. (2009). REM sleep and dreaming: Towards a theory of protoconsciousness. Nature Reviews Neuroscience, 10, 803813.CrossRefGoogle ScholarPubMed
Hobson, J. A., Pace-Schott, E. F., & Stickgold, R. (2000). Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behavioral and Brain Sciences, 23, 793842.CrossRefGoogle Scholar
Holmes, E. (2009). The life of Mozart, including his correspondence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hove, M. J., Stelzer, J., Nierhaus, T., Thiel, S. D., Gundlach, C., Margulies, D. S., … Merker, B. (2016). Brain network reconfiguration and perceptual decoupling during an absorptive state of consciousness. Cerebral Cortex, 26, 31163124.CrossRefGoogle ScholarPubMed
Huron, D. B. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Impett, J. (2009). Making a mark: The psychology of composition. In Hallam, S., Cross, I., & Thaut, M. (Eds.), Oxford handbook of music psychology. Oxford: Oxford University Press.Google Scholar
Johnson-Laird, P. N. (2002). How jazz musicians improvise. Music Perception: An Interdisciplinary Journal, 19, 415442.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Koelsch, S. (2013). Brain and music. Chichester: Wiley-Blackwell.Google ScholarPubMed
Koelsch, S., Fritz, T., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239250.CrossRefGoogle ScholarPubMed
Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Müller, K., & Gruber, O. (2009). Functional architecture of verbal and tonal working memory: An FMRI study. Human Brain Mapping, 30, 859873.CrossRefGoogle ScholarPubMed
Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. The Journal of Neuroscience, 27, 308314.CrossRefGoogle ScholarPubMed
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679.CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2.CrossRefGoogle ScholarPubMed
Lu, J., Yang, H., Zhang, X., He, H., Luo, C., & Yao, D. (2015). The brain functional state of music creation: An fMRI study of composers. Scientific Reports, 5.Google ScholarPubMed
Martens, M. A., Reutens, D. C., & Wilson, S. J. (2010). Auditory cortical volumes and musical ability in Williams syndrome. Neuropsychologia, 48, 26022609.CrossRefGoogle ScholarPubMed
Martindale, C. (2007). Creativity, primordial cognition, and personality. Personality and Individual Differences, 43, 17771785.CrossRefGoogle Scholar
McPherson, M. J., Barrett, F. S., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2016). Emotional intent modulates the neural substrates of creativity: An fMRI study of emotionally targeted improvisation in Jazz musicians. Scientific Reports, 6.CrossRefGoogle ScholarPubMed
Meyer, L. B. (1956). Emotion and meaning in music. Chicago, IL: University of Chicago Press.Google Scholar
Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K., … Järvelä, I. (2016). Creative activities in music – A genome-wide linkage analysis. PloS ONE, 11, e0148679.CrossRefGoogle Scholar
Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. International Journal of Psychophysiology, 24, 145159.CrossRefGoogle ScholarPubMed
Pinho, A. L., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. The Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063.CrossRefGoogle ScholarPubMed
Pressing, J. (1998). Psychological constraints on improvisation. In Nettl, B., & Russell, M. (Eds.), In the course of performance: Studies in the world of musical improvisation (pp. 4770). Chicago, IL: University of Chicago Press.Google Scholar
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180190.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718724.CrossRefGoogle ScholarPubMed
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Rahman, S., & Bhattacharya, J. (2016). Neurocognitive aspects of musical improvisation and performance. In Multidisciplinary contributions to the science of creative thinking (pp. 261279). Singapore: Springer.CrossRefGoogle Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257262.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216219.CrossRefGoogle ScholarPubMed
Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22, 637652.CrossRefGoogle Scholar
Sviderskaya, N. E. (2011). The EEG spatial pattern and psychophysiological characteristics of divergent and convergent thinking in humans. Human Physiology, 37, 3138.CrossRefGoogle Scholar
Thatcher, R. W., North, D., & Biver, C. (2005). EEG and intelligence: relations between EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116, 21292141.CrossRefGoogle ScholarPubMed
Villarreal, M.F., Cerquetti, D., Caruso, S., Schwarcz López Aranguren, V., Gerschcovich, Frega, E.R., , A. L., & Leiguarda, R. C. (2013). Neural correlates of musical creativity: Differences between high and low creative subjects. PLoS ONE, 8, e75427. doi:10.1371/journal.pone.0075427CrossRefGoogle ScholarPubMed
Warren, J. D., Uppenkamp, S., Patterson, R. D., & Griffiths, T. D. (2003). Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences, 100, 1003810042.CrossRefGoogle ScholarPubMed
Wiggins, G. A. (2012). Defining inspiration? Modelling the non-conscious creative process. In Collins, D. (Ed.), The act of musical composition: Studies in the creative process (pp. 233253). Aldershot: Ashgate Publishing Limited.Google Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547558.CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Zarate, J. M. (2012). Cortical processing of music. In Poeppel, D., Overath, T., Popper, A. N., & Fay, R. R. (Eds.), The human auditory cortex (pp. 261294). New York, NY: Springer.CrossRefGoogle Scholar

References

Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., … Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 6578.CrossRefGoogle Scholar
Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830842.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., & Ullén, F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30, 272284.CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: The neural correlates of musical improvisation. NeuroImage, 41, 535543.CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712719.CrossRefGoogle ScholarPubMed
Bhattacharya, J., & Petsche, H. (2002). Shadows of artistry: Cortical synchrony during perception and imagery of visual art. Cognitive Brain Research, 13, 179186.CrossRefGoogle ScholarPubMed
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. The Journal of the Acoustical Society of America, 137, 378387.CrossRefGoogle ScholarPubMed
Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23, 27912803.CrossRefGoogle Scholar
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957.CrossRefGoogle ScholarPubMed
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405, 164167.CrossRefGoogle ScholarPubMed
Cross, I. (2008). Musicality and the human capacity for culture. Musicae Scientiae, 12(1 Suppl), 147167.CrossRefGoogle Scholar
Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (Eds.). (1992). Optimal experience: Psychological studies of flow in consciousness. Cambridge: Cambridge University Press.Google Scholar
Davies, S. (1990). Functional and procedural definitions of art. Journal of Aesthetic Education, 24(2), 99106.CrossRefGoogle Scholar
Davies, S. (2010). Philosophical perspectives on art. Oxford: Oxford University Press.Google Scholar
de Manzano, Ö., & Ullén, F. (2012a). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272280.CrossRefGoogle ScholarPubMed
de Manzano, Ö., & Ullén, F. (2012b). Goal-independent mechanisms for free response generation: Creative and pseudo-random performance share neural substrates. NeuroImage, 59, 772780.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13, 746761.CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain (1st ed.). New York, NY: Palgrave Macmillan.CrossRefGoogle Scholar
Dissanayake, E. (1992). Homo aestheticus: Where art comes from and why. Seattle, WA: University of Washington Press.Google Scholar
Dolan, D., Sloboda, J. A., Jensen, H. J., Cruts, B., & Feygelson, E. (2013). The improvisatory approach to classical music performance: An empirical investigation into its characteristics and impact. Music Performance Research, 6, 138.Google Scholar
Donnay, G. F., Rankin, S. K., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2014). Neural substrates of interactive musical improvisation: An fMRI study of “trading fours” in jazz. PLoS ONE, 9(2).CrossRefGoogle Scholar
Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169172.CrossRefGoogle ScholarPubMed
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854862.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003a). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 92409245.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003b). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514517.CrossRefGoogle ScholarPubMed
Gaut, B., & Lopes, D. (Eds). (2013). The Routledge companion to aesthetics. London: Routledge.CrossRefGoogle Scholar
Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13, 943949.CrossRefGoogle ScholarPubMed
Ishizu, T., & Zeki, S. (2011). Toward a brain-based theory of beauty. PLoS ONE, 6(7), e21852.CrossRefGoogle Scholar
Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than non-musicians? Journal of Basic and Clinical Physiology and Pharmacology, 12(2 Suppl), 125143.CrossRefGoogle ScholarPubMed
Kowatari, Y., Hee Lee, S., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690.CrossRefGoogle ScholarPubMed
Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: Auditory–motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189194.CrossRefGoogle ScholarPubMed
Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489508.CrossRefGoogle Scholar
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679.CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2(834).CrossRefGoogle ScholarPubMed
Manturzewska, M. (1990). A biographical study of the life-span development of professional musicians. Psychology of Music, 18, 112139.CrossRefGoogle Scholar
Marques, C., Moreno, S., Castro, S. L., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19, 14531463.CrossRefGoogle Scholar
McPherson, M. J., Barrett, F. S., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2016). Emotional intent modulates the neural substrates of creativity: An fMRI study of emotionally targeted improvisation in jazz musicians. Scientific Reports, 6(18460).CrossRefGoogle ScholarPubMed
McPherson, M., & Limb, C. J. (2013). Difficulties in the neuroscience of creativity: Jazz improvisation and the scientific method. Annals of the New York Academy of Sciences, 1303, 8083.CrossRefGoogle ScholarPubMed
Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews. Neuroscience, 3, 473478.CrossRefGoogle Scholar
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811814.CrossRefGoogle ScholarPubMed
Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. The Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2015). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26(7), 10473211.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hirstein, W. (1999). The science of art. A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 1551.Google Scholar
Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C., … Reiss, A. L. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5(10894).CrossRefGoogle Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688694.CrossRefGoogle ScholarPubMed
Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI study. Human Brain Mapping, 34, 10881101.CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1999). Handbook of creativity (Vol. 1). Cambridge, MA: Cambridge University Press.Google Scholar
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161, 110.CrossRefGoogle ScholarPubMed
Tinio, P. P. (2013). From artistic creation to aesthetic reception: The mirror model of art. Psychology of Aesthetics, Creativity, and the Arts, 7, 265.CrossRefGoogle Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547558.CrossRefGoogle ScholarPubMed

References

Amabile, T. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 9971013. http://dx.doi.org/10.1037/0022-3514.43.5.997CrossRefGoogle Scholar
Amabile, T. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45, 357376. http://dx.doi.org/10.1037/0022-3514.45.2.357CrossRefGoogle Scholar
Amabile, T. (1996). Creativity in context. Boulder, CO: Westview Press.Google Scholar
Amabile, T., & Pillemer, J. (2012). Perspectives on the social psychology of creativity. Journal of Creative Behavior, 46, 315. http://dx.doi.org/10.1002/jocb.001CrossRefGoogle Scholar
Andrews-Hanna, J. (2011). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18, 251270. http://dx.doi.org/10.1177/1073858411403316CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R., Grazioplene, R., & Jung, R. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. http://dx.doi.org/10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Barrett, H., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113, 628647. http://dx.doi.org/10.1037/0033-295x.113.3.628CrossRefGoogle ScholarPubMed
Bashwiner, D., Wertz, C., Flores, R., & Jung, R. (2016). Musical creativity “revealed” in brain structure: Interplay between motor, default mode, and limbic networks. Scientific Reports, 6, 20482. http://dx.doi.org/10.1038/srep20482CrossRefGoogle ScholarPubMed
Baumeister, R. (1998). The Self. In Fiske, S. & Lindzey, G. (Eds.), Handbook of social psychology (4th ed., pp. 680740). New York, NY: McGraw-Hill.Google Scholar
Baumeister, R., & Tierney, J. (2011). Willpower. New York, NY: Penguin Press.Google Scholar
Beaty, R., Benedek, M., Barry Kaufman, S., & Silvia, P. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://dx.doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R., Benedek, M., Wilkins, R., Jauk, E., Fink, A., & Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. http://dx.doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beaty, R., & Silvia, P. (2012a). Metaphorically speaking: Cognitive abilities and the production of figurative language. Memory and Cognition, 41, 255267. http://dx.doi.org/10.3758/s13421-012-0258-5CrossRefGoogle Scholar
Beaty, R., & Silvia, P. (2012b). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319. http://dx.doi.org/10.1037/a0029171CrossRefGoogle Scholar
Beaty, R., Silvia, P., Nusbaum, E., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory and Cognition, 42, 11861197. http://dx.doi.org/10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. http://dx.doi.org/10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Bronowski, J. (1965). The identity of man. Garden City, NY: Published for the American Museum of Natural History by the Natural History Press.Google Scholar
Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it stick. London: Harvard University Press.Google Scholar
Buckner, R., & Carroll, D. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957. http://dx.doi.org/10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Bunko, A. (2011). Hugh Laurie. London: John Blake.Google Scholar
Carr, E. (2016). The last days Of the polymath. 1843 Magazine, The Economist. Retrieved from www.1843magazine.com/content/edward-carr/last-days-polymathGoogle Scholar
Chein, J., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cognitive Brain Research, 25, 607623. http://dx.doi.org/10.1016/j.cogbrainres.2005.08.013CrossRefGoogle ScholarPubMed
Chiappe, D., & MacDonald, K. (2005). The evolution of domain-general mechanisms in intelligence and learning. The Journal of General Psychology, 132, 540. http://dx.doi.org/10.3200/genp.132.1.5-40CrossRefGoogle ScholarPubMed
Connolly, A., Guntupalli, J., Gors, J., Hanke, M., Halchenko, Y., Wu, Y., … Haxby, J. V. (2012). The representation of biological classes in the human brain. Journal of Neuroscience, 32, 26082618. http://dx.doi.org/10.1523/jneurosci.5547-11.2012CrossRefGoogle ScholarPubMed
Conti, R., Coon, H., & Amabile, T. (1996). Evidence to support the componential model of creativity: Secondary analyses of three studies. Creativity Research Journal, 9, 385389. http://dx.doi.org/10.1207/s15326934crj0904_9CrossRefGoogle Scholar
Cowey, A. (1979). Cortical maps and visual perception. The Grindley Memorial Lecture. Quarterly Journal of Experimental Psychology, 31, 117. http://dx.doi.org/10.1080/14640747908400703CrossRefGoogle ScholarPubMed
Duckworth, A., Peterson, C., Matthews, M., & Kelly, D. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 10871101. http://dx.doi.org/10.1037/0022-3514.92.6.1087CrossRefGoogle ScholarPubMed
Dweck, C. (1986). Motivational processes affecting learning. American Psychologist, 41, 10401048. http://dx.doi.org/10.1037/0003-066x.41.10.1040CrossRefGoogle Scholar
Dweck, C. (1999). Self-theories. Philadelphia, PA: Psychology Press.Google Scholar
Dweck, C. (2006). Mindset. New York, NY: Random House.Google Scholar
Fink, A., Graif, B., & Neubauer, A. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854862. http://dx.doi.org/10.1016/j.neuroimage.2009.02.036CrossRefGoogle ScholarPubMed
Fischer, P., Kubitzki, J., Guter, S., & Frey, D. (2007). Virtual driving and risk taking: Do racing games increase risk-taking cognitions, affect, and behaviors? Journal of Experimental Psychology: Applied, 13, 2231. http://dx.doi.org/10.1037/1076-898x.13.1.22Google ScholarPubMed
Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42, 11781184. http://dx.doi.org/10.1016/j.neuroimage.2008.05.059CrossRefGoogle Scholar
Glass, B., Maddox, W., & Love, B. (2013). Real-time strategy game training: Emergence of a cognitive flexibility trait. PLoS ONE, 8, e70350. http://dx.doi.org/10.1371/journal.pone.0070350CrossRefGoogle ScholarPubMed
Gray, J., Chabris, C., & Braver, T. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316322. http://dx.doi.org/10.1038/nn1014CrossRefGoogle ScholarPubMed
Grayling, A. (2016). The age of genius: The seventeenth century and the birth of the modern mind. London: Bloomsbury Publishing.Google Scholar
Green, C., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18, 8894. http://dx.doi.org/10.1111/j.1467-9280.2007.01853.xCrossRefGoogle ScholarPubMed
Greenfield, S. (2015). Mind change: How digital technologies are leaving their mark on our brains. London: Random House.Google Scholar
Greicius, M., Supekar, K., Menon, V., & Dougherty, R. (2008). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 7278. http://dx.doi.org/10.1093/cercor/bhn059CrossRefGoogle ScholarPubMed
Heilman, K., & Acosta, L. (2013). Visual artistic creativity and the brain. Progress in Brain Research, 204, 1943. http://dx.doi.org/10.1016/B978-0-444-63287-6.00002-6CrossRefGoogle ScholarPubMed
Hoff, J. (1967). Imagination in science. Berlin: Springer.Google Scholar
Holloway, I., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number comparison. Developmental Science, 11, 644649. http://dx.doi.org/10.1111/j.1467-7687.2008.00712.xCrossRefGoogle ScholarPubMed
Kirkham, N., Slemmer, J., & Johnson, S. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35B42. http://dx.doi.org/10.1016/s0010-0277(02)00004-5CrossRefGoogle ScholarPubMed
Koestler, A. (1964). The act of creation. London: Hutchinson.Google Scholar
Kounios, J. & Beeman, M. (2009). The aha! moment: The cognitive neuroscience of insight. Current Directions in Psychological Science, 18, 210216. http://dx.doi.org/10.1111/j.1467-8721.2009.01638.xCrossRefGoogle Scholar
Lee, W., Reeve, J., Xue, Y., & Xiong, J. (2012). Neural differences between intrinsic reasons for doing versus extrinsic reasons for doing: An fMRI study. Neuroscience Research, 73, 6872. http://dx.doi.org/10.1016/j.neures.2012.02.010CrossRefGoogle ScholarPubMed
Limb, C., & Braun, A. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679. http://dx.doi.org/10.1371/journal.pone.0001679CrossRefGoogle ScholarPubMed
Long Lingo, E., & Tepper, S. (2013a). Looking back, looking forward: Arts-based careers and creative work. Work and Occupations, 40, 337363. http://dx.doi.org/10.1177/0730888413505229CrossRefGoogle Scholar
Long Lingo, E., & Tepper, S. (2013). Patterns and pathways: Artists and creative work in a changing economy. Work and Occupations, 40, 337363.Google Scholar
Mahy, C., Moses, L., & Pfeifer, J. (2014). How and where: Theory-of-mind in the brain. Developmental Cognitive Neuroscience, 9, 6881. http://dx.doi.org/10.1016/j.dcn.2014.01.002CrossRefGoogle ScholarPubMed
Martindale, C. (2001). Oscillations and analogies. American Psychologist, 56, 342345.CrossRefGoogle ScholarPubMed
Moscovitch, M. (1995). Recovered consciousness: A hypothesis concerning modularity and episodic memory. Journal of Clinical and Experimental Neuropsychology, 17, 276290. http://dx.doi.org/10.1080/01688639508405123CrossRefGoogle ScholarPubMed
Oudeyer, P., & Kaplan, F. (2007). Language evolution as a Darwinian process: Computational studies. Cognitive Processes, 8, 2135. http://dx.doi.org/10.1007/s10339-006-0158-3CrossRefGoogle ScholarPubMed
Oxman, N. (2016). Age of entanglement. Journal of Design and Science. Retrieved from http://jods.mitpress.mit.edu/pub/AgeOfEntanglementCrossRefGoogle Scholar
O’Callaghan, C., Shine, J., Lewis, S., Andrews-Hanna, J., & Irish, M. (2015). Shaped by our thoughts – A new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain and Cognition, 93, 110. http://dx.doi.org/10.1016/j.bandc.2014.11.001CrossRefGoogle ScholarPubMed
Paterson, D., & Chiasson, D. (2012). Poetry and politics: Reading and conversation with Don Paterson and Dan Chiasson. Presentation, Boston University.Google Scholar
Plank, M. (1949). Scientific autobiography and other papers. New York, NY: Philosophical Library.Google Scholar
Ramón y Cajal, S. (1989). Recollections of my life. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Reeve, J., & Lee, W. (2014). Students’ classroom engagement produces longitudinal changes in classroom motivation. Journal of Educational Psychology, 106, 527540. http://dx.doi.org/10.1037/a0034934CrossRefGoogle Scholar
Robinson, A. (2006). The last man who knew everything. New York, NY: Pi Press.Google Scholar
Robinson, K. (2006). Do schools kill creativity? Lecture, TED Talks.Google Scholar
Root-Bernstein, R. (1984). Creative process as a unifying theme of human cultures. Daedalus, 113, 197219.Google Scholar
Root-Bernstein, R. (1989). Discovering. Cambridge, MA: Harvard University Press.Google Scholar
Root-Bernstein, R. (2003). The art of innovation: Polymaths and universality of the creative process. In Shavinina, L. V. (Ed.), The international handbook on innovation (pp. 267278). Oxford: Oxford Univetsity Press. http://dx.doi.org/10.1016/b978-008044198-6/50018-8CrossRefGoogle Scholar
Rose, T. (2016). The end of average. New York, NY: Harper Audio.Google Scholar
Saffran, J., & Thiessen, E. (2008). Domain-general learning capacities. In Hoff, E. & Shatz, M. (Eds.), Blackwell handbook of language development (1st ed., pp. 6886). Chichester: Wiley Publishing.Google Scholar
Schacter, D., Addis, D., Hassabis, D., Martin, V., Spreng, R., & Szpunar, K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. http://dx.doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Schwarzenegger, A., Petre, P., & Dürr, K. (2012). Total recall. Hamburg: Hoffmann und Campe.Google Scholar
Shamma, S. (2001). On the role of space and time in auditory processing. Trends in Cognitive Sciences, 5, 340348. http://dx.doi.org/10.1016/s1364-6613(00)01704-6CrossRefGoogle ScholarPubMed
Smith, L. (1999). Children’s noun learning: How general learning processes make specialized learning mechanisms. In MacWhinney, B. (Ed.), The emergence of language (1st ed., pp. 277305). Chichester: Wiley Publishing.Google Scholar
Story Musgrave Biography – Academy of Achievement. (2016). Achievement.org. Retrieved April 25, 2016, from www.achievement.org/autodoc/page/mus0bio-1Google Scholar
Sur, M., Garraghty, P., & Roe, A. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242, 14371441. http://dx.doi.org/10.1126/science.2462279CrossRefGoogle ScholarPubMed
Tryon, W. (2014). Cognitive neuroscience and psychotherapy. New York, NY: Academic Press.Google Scholar
Turkle, S. (2013). Alone together. New York, NY: Basic Books.Google Scholar
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483488. http://dx.doi.org/10.1016/j.tics.2003.09.002CrossRefGoogle ScholarPubMed
Wise, R., & Braga, R. (2014). Default mode network: The seat of literary creativity?. Trends in Cognitive Sciences, 18, 116117. http://dx.doi.org/10.1016/j.tics.2013.11.001CrossRefGoogle ScholarPubMed
Yochum, H., & Fosdick, R. (1963). Adventure in giving: The story of the general education board. The Journal of Higher Education, 34, 119. http://dx.doi.org/10.2307/1980228Google Scholar
Zeki, S. (1998). Art and the brain. Daedalus, 127, 71103.Google Scholar
Zeki, S. (1999). Inner vision. Oxford: Oxford University Press.Google Scholar