Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-v9xhf Total loading time: 0.58 Render date: 2022-05-19T04:33:07.645Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

10 - Cell-density-dependent regulation of streptococcal competence

Published online by Cambridge University Press:  08 August 2009

M. Dilani Senadheera
Affiliation:
Dental Research Institute, University of Toronto, Toronto, Canada
Celine Levesque
Affiliation:
Dental Research Institute, University of Toronto, Toronto, Canada
Dennis G. Cvitkovitch
Affiliation:
Dental Research Institute, University of Toronto, Toronto, Canada
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

A brief history

In the 1920s Frederick Griffith, a medical officer at the Ministry of Health in Britain, made a significant discovery regarding Streptococcus pneumoniae, a bacterium that caused a pneumonia epidemic in London. While examining the strain variability within different groups of pneumococci, Griffith noted that an avirulent strain of the bacterium could revert to the virulent type or remain unchanged following subculture (37). Because this phenomenon enabled the bacterium to acquire a novel heritable phenotype, Griffith coined the term “transformation principle” to describe the phenotypic changes he observed.

In his classic experiment, Griffith studied a highly infective, encapsulated S strain that formed smooth colonies, and an avirulent R strain, which had no capsule and formed rough colonies when grown on blood agar (37). When healthy mice were injected with the S strain, they died of septice- mia, whereas separate admission of the R strain or the heat-killed S strain appeared to be harmless. However, when the live R strain and the heat-killed S strain were injected simultaneously, the mice died. Surprisingly, when blood samples drawn from these dead animals were analyzed, both R and S live strains were detected. Based on these results, Griffith concluded that a “transforming factor”, present in the heat-killed S strain, was able to “transform” an avirulent R strain into a capsulated, virulent S strain.

Over the next few decades, Griffith's inspiring work on transformation was followed up by a number of scientists.

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 233 - 268
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdic, D., McShan, W. M.et al. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natn. Acad. Sci. USA 99(22): 14434–9.CrossRefGoogle ScholarPubMed
Alloing, G., Granadel, C.et al. 1996. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Molec. Microbiol. 21(3): 471–8.CrossRefGoogle ScholarPubMed
Alloing, G., Martin, B.et al. 1998. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum-sensing by the oligopeptide permease. Molec. Microbiol. 29(1): 75–83.CrossRefGoogle ScholarPubMed
Alloing, G., Trombe, M. C.et al. 1990. The ami locus of the gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of gram-negative bacteria. Molec. Microbiol. 4(4): 633–44.CrossRefGoogle ScholarPubMed
Aspiras, M. B., Ellen, R. P.et al. 2004. ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol. Lett. 238(1): 167–74.Google ScholarPubMed
Avery, O. T., MacLeod, C. M.et al. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79: 137–58.CrossRefGoogle ScholarPubMed
Banas, J. A. 2004. Virulence properties of Streptococcus mutans. Front. Biosci. 9: 1267–77.CrossRefGoogle ScholarPubMed
Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109(4): 421–4.CrossRefGoogle ScholarPubMed
Bhagwat, S. P., Nary, J.et al. 2001. Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiol. Lett. 205(2): 225–30.CrossRefGoogle ScholarPubMed
Boucher, Y., Douady, C. J.et al. 2003. Lateral gene transfer and the origins of prokaryotic groups. A. Rev. Genet. 37: 283–328.CrossRefGoogle ScholarPubMed
Campbell, E. A., Choi, S. Y.et al. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Molec. Microbiol. 27(5): 929–39.CrossRefGoogle ScholarPubMed
Cheng, Q., Campbell, E. A.et al. 1997. The com locus controls genetic transformation in Streptococcus pneumoniae. Molec. Microbiol. 23(4): 683–92.CrossRefGoogle ScholarPubMed
Claverys, J. P. and Havarstein, L. S. 2002. Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. Front. Biosci. 7: d1798–814.CrossRefGoogle ScholarPubMed
Claverys, J. P. and Martin, B. 1998. Competence regulons, genomics and streptococci. Molec. Microbiol. 29(4): 1126–7.CrossRefGoogle ScholarPubMed
Claverys, J. P., Prudhomme, M.et al. 2000. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity?Molec. Microbiol. 35(2): 251–9.CrossRefGoogle ScholarPubMed
Cvitkovitch, D. G. 2001. Genetic competence and transformation in oral streptococci. Crit. Rev. Oral Biol. Med. 12(3): 217–43.CrossRefGoogle ScholarPubMed
Cvitkovitch, D. G., Li, Y. H.et al. 2003. Quorum-sensing and biofilm formation in Streptococcal infections. J. Clin. Invest. 112(11): 1626–32.CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R.et al. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361): 295–8.CrossRefGoogle ScholarPubMed
Saizieu, A., Gardes, C.et al. 2000. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182(17): 4696–703.CrossRefGoogle ScholarPubMed
Diep, D. B., Havarstein, L. S.et al. 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60(1): 160–6.Google ScholarPubMed
Dowson, C. G., Barcus, V.et al. 1997. Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Soc. Appl. Bacteriol. Symp. Ser. 26: 42S–51S.CrossRefGoogle ScholarPubMed
Dowson, C. G., Coffey, T. J.et al. 1993. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Molec. Microbiol. 9(3): 635–43.CrossRefGoogle ScholarPubMed
Dubnau, D. 1999. DNA uptake in bacteria. A. Rev. Microbiol. 53: 217–44.CrossRefGoogle ScholarPubMed
Echenique, J. R., Chapuy-Regaud, S.et al. 2000. Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Molec. Microbiol. 36(3): 688–96.CrossRefGoogle ScholarPubMed
Echenique, J. R. and Trombe, M. C. 2001. Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB. J. Bacteriol. 183(15): 4599–608.CrossRefGoogle ScholarPubMed
Erdos, G., Sayeed, S.et al. 2003. Development and characterization of a pooled Haemophilus influenzae genomic library for the evaluation of gene expression changes associated with mucosal biofilm formation in otitis media. Int. J. Pediatr. Otorhinolaryngol. 67(7): 749–55.CrossRefGoogle ScholarPubMed
Fabret, C. and Hoch, J. A. 1998. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J. Bacteriol. 180(23): 6375–83.Google ScholarPubMed
Facklam, R. 2000. What happened to the Streptococci: overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 15: 613–30.CrossRefGoogle Scholar
Ferretti, J. J., Ajdic, D.et al. 2004. Comparative genomics of streptococcal species. Ind. J. Med. Res. 119 (Suppl.): 1–6.Google ScholarPubMed
Finch, R. G., Pritchard, D. I.et al. 1998. Quorum-sensing: a novel target for anti-infective therapy. J. Antimicrob. Chemother. 42(5): 569–71.CrossRefGoogle ScholarPubMed
Gasc, A. M., Giammarinaro, P.et al. 1998. Organization around the dnaA gene of Streptococcus pneumoniae. Microbiology 144 (2): 433–9.CrossRefGoogle ScholarPubMed
Gendron, R., Grenier, D.et al. 2000. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect. 2(8): 897–906.CrossRefGoogle ScholarPubMed
Giammarinaro, P., Sicard, M.et al. 1999. Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145 (8): 1859–69.CrossRefGoogle ScholarPubMed
Gilmore, K. S., Srinivas, P.et al. (2003). Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect. Immun. 71(8): 4759–66.CrossRefGoogle Scholar
Gilson, L., Mahanty, H. K.et al. 1990. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9(12): 3875–94.Google ScholarPubMed
Grebe, T. W. and Stock, J. B. 1999. The histidine protein kinase superfamily. Adv. Microb. Physiol. 41: 139–227.CrossRefGoogle ScholarPubMed
Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113–59.CrossRefGoogle ScholarPubMed
Guenzi, E., Gasc, A. M.et al. 1994. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Molec. Microbiol. 12(3): 505–15.CrossRefGoogle ScholarPubMed
Havarstein, L. S. 1998. Bacterial gene transfer by natural genetic transformation. APMIS (Suppl.) 84: 43–6.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Coomaraswamy, G.et al. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natn. Acad. Sci. USA 92(24): 11140–4.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Diep, D. B.et al. 1995. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Molec. Microbiol. 16(2): 229–40.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Gaustad, P.et al. 1996. Identification of the streptococcal competence-pheromone receptor. Molec. Microbiol. 21(4): 863–9.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Hakenbeck, R.et al. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change phenotype by interspecies recombinational exchanges. J. Bacteriol. 179(21): 6589–94.CrossRefGoogle Scholar
Havarstein, L. S., Holo, H.et al. 1994. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 140 (9): 2383–9.CrossRefGoogle ScholarPubMed
Havarstein, L. S., and D. A. Morrison 1999. Quorum-sensing and peptide pheromones in streptococcal competence for genetic transformation. In Dunny, G. M. & Winans, S. C. (eds), Cell-Cell Signaling in Bacteria, pp. 9–26. Washington, DC: ASM Press.Google Scholar
Hershey, A. D. and Chase, M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36: 39–56.CrossRefGoogle ScholarPubMed
Hillman, J. D., Socransky, S. S.et al. 1985. The relationships between streptococcal species and periodontopathic bacteria in human dental plaque. Arch. Oral. Biol. 30(11–12): 791–5.CrossRefGoogle ScholarPubMed
Holo, H., Nilssen, O.et al. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173(12): 3879–87.CrossRefGoogle ScholarPubMed
Hui, F. M. and Morrison, D. A. 1991. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J. Bacteriol. 173(1): 372–81.CrossRefGoogle ScholarPubMed
Hui, F. M., Zhou, L.et al. 1995. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153(1): 25–31.CrossRefGoogle ScholarPubMed
Jenkinson, H. F. 2000. Genetics of Streptococcus sanguis. In Rood, J. I. (ed.), Gram-Positive Pathogens, pp. 287–94. Washington, DC: American Society for Microbiology.Google Scholar
Jenkinson, H. F., Baker, R. A.et al. 1996. A binding-lipoprotein-dependent oligopeptide transport system in Streptococcus gordonii essential for uptake of hexa- and heptapeptides. J. Bacteriol. 178(1): 68–77.CrossRefGoogle ScholarPubMed
Jenkinson, H. F. and Lamont, R. J. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral. Biol. Med. 8(2): 175–200.CrossRefGoogle ScholarPubMed
Kleerebezem, M. and Quadri, L. E. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22(10): 1579–96.CrossRefGoogle ScholarPubMed
Kleerebezem, M., Quadri, L. E.et al. 1997. Quorum-sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molec. Microbiol. 24(5): 895–904.CrossRefGoogle ScholarPubMed
Knutsen, E., Ween, O.et al. 2004. Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J. Bacteriol. 186(10): 3078–85.CrossRefGoogle ScholarPubMed
Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. A. Rev. Microbiol. 54: 413–37.CrossRefGoogle ScholarPubMed
Lange, R., Wagner, C.et al. 1999. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237(1): 223–34.CrossRefGoogle ScholarPubMed
Lee, M. S., Dougherty, B. A.et al. 1999. Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl. Environ. Microbiol. 65(5): 1883–90.Google ScholarPubMed
Lee, M. S. and Morrison, D. A. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum-sensing to competence for genetic transformation. J. Bacteriol. 181(16): 5004–16.Google ScholarPubMed
Lee, S. F., Delaney, G. D.et al. 2004. A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans. Infect. Immun. 72(7): 3968–73.CrossRefGoogle Scholar
Leonard, C. G. 1973. Early events in development of streptococcal competence. J. Bacteriol. 114(3): 1198–205.Google ScholarPubMed
Li, Y. H., Hanna, M. N.et al. 2001. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183(23): 6875–84.CrossRefGoogle ScholarPubMed
Li, Y. H., Lau, P. C.et al. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183(3): 897–908.CrossRefGoogle ScholarPubMed
Li, Y. H., Lau, P. C.et al. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J. Bacteriol. 184(22): 6333–42.CrossRefGoogle ScholarPubMed
Li, Y. H., Tang, N.et al. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184(10): 2699–708.CrossRefGoogle ScholarPubMed
Lina, G., Jarraud, S.et al. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Molec. Microbiol. 28(3): 655–62.CrossRefGoogle ScholarPubMed
Loo, C. Y., Corliss, D. A.et al. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182(5): 1374–82.CrossRefGoogle ScholarPubMed
Lorenz, M. G. and Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58(3): 563–602.Google ScholarPubMed
Lunsford, R. D. 1998. Streptococcal transformation: essential features and applications of a natural gene exchange system. Plasmid 39(1): 10–20.CrossRefGoogle ScholarPubMed
Lunsford, R. D. and London, J. 1996. Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain wicky. J. Bacteriol. 178(19): 5831–5.CrossRefGoogle ScholarPubMed
Lunsford, R. D. and Roble, A. G. 1997. comYA, a gene similar to comGA of Bacillus subtilis, is essential for competence-factor-dependent DNA transform-ation in Streptococcus gordonii. J. Bacteriol. 179(10): 3122–6.CrossRefGoogle Scholar
Luo, P., Li, H.et al. 2003. ComX is a unique link between multiple quorum-sensing outputs and competence in Streptococcus pneumoniae. Molec. Microbiol. 50(2): 623–33.CrossRefGoogle ScholarPubMed
Luo, P., Li, H.et al. 2004. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae. Molec. Microbiol. 54(1): 172–83.CrossRefGoogle ScholarPubMed
Luo, P. and Morrison, D. A. 2003. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 185(1): 349–58.CrossRefGoogle ScholarPubMed
Magnuson, R., Solomon, J.et al. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77(2): 207–16.CrossRefGoogle ScholarPubMed
Marsh, P. D. 2000. Oral ecology and its impact on oral microbial diversity. In Ellen, R. P. (ed.), Oral Bacterial Ecology: the Molecular Basis, pp. 11–65. Wymondham, UK: Horizon Scientific Press.Google Scholar
Marsh, P. D. 2004. Dental plaque as a microbial biofilm. Caries Res. 38(3): 204–11.CrossRefGoogle ScholarPubMed
Martin, B., Garcia, P.et al. 1995. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls an SOS regulon. Dev. Biol. Stand. 85: 293–300.Google ScholarPubMed
Martin, B., Prudhomme, M.et al. 2000. Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Molec. Microbiol. 38(4): 867–78.CrossRefGoogle ScholarPubMed
Marugg, J. D., Gonzalez, C. F.et al. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 58(8): 2360–7.Google ScholarPubMed
Mascher, T., Zahner, D.et al. 2003. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J. Bacteriol. 185(1): 60–70.CrossRefGoogle ScholarPubMed
McNab, R. and Jenkinson, H. F. 1998. Altered adherence properties of a Streptococcus gordonii hppA (oligopeptide permease) mutant result from transcriptional effects on cshA adhesin gene expression. Microbiology 144 (1): 127–36.CrossRefGoogle ScholarPubMed
Mejean, V. and Claverys, J. P. 1993. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268(8): 5594–9.Google ScholarPubMed
Mitchell, T. J. 2003. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1(3): 219–30.CrossRefGoogle ScholarPubMed
Morrison, D. A., Trombe, M. C.et al. 1984. Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAM beta 1. J. Bacteriol. 159(3): 870–6.Google ScholarPubMed
Mortier-Barriere, I., Saizieu, A.et al. 1998. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Molec. Microbiol. 27(1): 159–70.CrossRefGoogle ScholarPubMed
Moscoso, M. and Claverys, J.-P. 2004. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Molec. Microbiol. 54(3): 783–94.CrossRefGoogle ScholarPubMed
Pakula, R. and Walczak, W. 1963. On the nature of competence of transformable streptococci. J. Gen. Microbiol. 31: 125–33.CrossRefGoogle ScholarPubMed
Pestova, E. V., Havarstein, L. S.et al. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Molec. Microbiol. 21(4): 853–62.CrossRefGoogle Scholar
Pestova, E. V. and Morrison, D. A. 1998. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 180(10): 2701–10.Google ScholarPubMed
Petersen, F. C., Pecharki, D.et al. 2004. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J. Bacteriol. 186(18): 6327–31.CrossRefGoogle ScholarPubMed
Petersen, F. C. and Scheie, A. A. 2000. Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol. Immunol. 15(5): 329–34.CrossRefGoogle ScholarPubMed
Peterson, S., Cline, R. T.et al. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 182(21): 6192–202.CrossRefGoogle ScholarPubMed
Peterson, S. N., Sung, C. K.et al. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Molec. Microbiol. 51(4): 1051–70.CrossRefGoogle ScholarPubMed
Pozzi, G., Masala, L.et al. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178(20): 6087–90.CrossRefGoogle ScholarPubMed
Reichmann, P. and Hakenbeck, R. 2000. Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett. 190(2): 231–6.CrossRefGoogle Scholar
Rimini, R., Jansson, B.et al. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Molec. Microbiol. 36(6): 1279–92.CrossRefGoogle ScholarPubMed
Roberts, A. P., Pratten, J.et al. 1999. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol. Lett. 177(1): 63–6.CrossRefGoogle Scholar
Robinson, V. L., Buckler, D. R.et al. 2000. A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol. 7(8): 626–33.CrossRefGoogle Scholar
Russell, R. R. B. 2000. Pathogenesis of oral streptococci. In Rood, J. I.et al. (eds), Gram-Positive Pathogens, pp. 272–9. Washington, DC: American Society for Microbiology Press.Google Scholar
Sablon, E., Contreras, B.et al. 2000. Antimicrobial peptides of lactic acid bac-teria: mode of action, genetics and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21–60.Google Scholar
Schroder, H., Langer, T.et al. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12(11): 4137–44.Google Scholar
Sebert, M. E., Palmer, L. M.et al. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70(8): 4059–67.CrossRefGoogle ScholarPubMed
Senadheera, D., Huang, C.et al. 2004. Streptococcus mutans covR/S genes control adhesion, biofilm formation and competence development. J. Dent. Res. Special Issue (Proceedings from the International Association for Dental Research Annual Meeting), Abstr. 3001.Google Scholar
Socransky, S. S. and Haffajee, A. D. 2002. Dental biofilms: difficult therapeutic targets. Periodontol. 2000 28: 12–55.CrossRefGoogle ScholarPubMed
Stein, T., Borchert, S.et al. 2002. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Molec. Microbiol. 44(2): 403–16.CrossRefGoogle ScholarPubMed
Steinmoen, H., Knutsen, E.et al. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natn. Acad. Sci. USA 99(11): 7681–6.CrossRefGoogle ScholarPubMed
Steinmoen, H., Teigen, A.et al. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185(24): 7176–83.CrossRefGoogle ScholarPubMed
Stock, A. M., Robinson, V. L.et al. 2000. Two-component signal transduction. A. Rev. Biochem. 69: 183–215.CrossRefGoogle ScholarPubMed
Strauch, M. A. and Hoch, J. A. 1993. Signal transduction in Bacillus subtilis sporulation. Curr. Opin. Genet. Dev. 3(2): 203–12.CrossRefGoogle ScholarPubMed
Sturme, M. H., Kleerebezem, M.et al. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81(1–4): 233–43.CrossRefGoogle ScholarPubMed
Throup, J. P., Koretke, K. K.et al. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Molec. Microbiol. 35(3): 566–76.CrossRefGoogle ScholarPubMed
Tomasz, A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208(6): 155–9.CrossRefGoogle Scholar
Tomasz, A. and Beiser, S. M. 1965. Relationship between the competence antigen and the competence-activator substance in pneumococci. J. Bacteriol. 90(5): 1226–32.Google ScholarPubMed
Tomasz, A. and Hotchkiss, R. D. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natn. Acad. Sci. USA 51: 480–7.CrossRefGoogle Scholar
Wagner, C., Saizieu Ad, A.et al. 2002. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect. Immun. 70(11): 6121–8.CrossRefGoogle ScholarPubMed
Wang, B. Y., Chi, B.et al. 2002. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol. Immunol. 17(2): 108–12.CrossRefGoogle ScholarPubMed
Ween, O., Gaustad, P.et al. 1999. Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Molec. Microbiol. 33(4): 817–27.CrossRefGoogle ScholarPubMed
Wen, Z. T., Suntharaligham, D. G.et al. 2005. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect. Immunol. 73: 219–25.CrossRefGoogle ScholarPubMed
Whittaker, C. J., Klier, C. M.et al. 1996. Mechanisms of adhesion by oral bacteria. A. Rev. Microbiol. 50: 513–52.CrossRefGoogle ScholarPubMed
Winans, G. M. D. a. S. C. (ed.) 1999. Cell-Cell Signaling in Bacteria. Washington, DC: American Society of Microbiology Press.Google Scholar
Zhang, L. H. and Dong, Y. H. 2004. Quorum-sensing and signal interference: diverse implications. Molec. Microbiol. 53(6): 1563–71.CrossRefGoogle ScholarPubMed
Zhulin, I. B., Taylor, B. L.et al. 1997. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22(9): 331–3.CrossRefGoogle ScholarPubMed
Puyet, A., Greenberg, B. and Lacks, S. A. 1990. Genetic and structural characterization of end A, a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Molec. Biol. 213: 727–38.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×