Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-25T14:35:57.979Z Has data issue: false hasContentIssue false

Part I

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 5 - 256
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.6 References

Radzig, A. A. and Smirnov, B. M., Reference Data on Atoms, Molecules and Ions (Berlin: Springer, 1985).Google Scholar
Pauling, L., The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press, 1960).Google Scholar
Eyring, H., Walter, J., and Kimball, G. E., Quantum Chemistry (Ithaca, NY: Cornell University Press, 1946).Google Scholar
Girifalco, L. A. and Lad, R. A., Energy of cohesion, compressibility, and the potential energy of the graphite system. J. Chem. Phys. 25 (1956) 693–7.CrossRefGoogle Scholar
Savini, G., Dappe, Y. J., Oberg, S. et al., Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49 (2011) 62–9.Google Scholar
Reguzzoni, M., Fasolino, A., Molinari, E., and Righi, M. C., Potential energy surface for graphene on graphene: Ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86 (2012) 245434.CrossRefGoogle Scholar
Dresselhaus, M., Dresselhaus, G., and Eklund, P., Science of Fullerenes and Carbon Nanotubes (New York: Academic Press, 1996).Google Scholar
Fahy, S., Louie, S. T., and Cohen, M. L., Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34 (1986) 1191–9.Google Scholar
Los, J. H. and Fasolino, A., Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68 (2003) 024107.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al., Electric field effect in atomically thin carbon films. Science 306 (2004) 666–9.Google Scholar
Novoselov, K. S., Jiang, D., Zhang, Y. et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102 (2005) 10451–3.Google Scholar
Kara, A., Enriquez, H., Seitsonen, A. P. et al., A review on silicene: New candidate for electronics. Surf. Sci. Rep. 67 (2012) 118.Google Scholar
Acun, A., Zhang, L., Bampoulis, P. et al., Germanene: The germanium analogue of graphene. J. Phys.: Cond. Mat. 27 (2015) 443002.Google Scholar
Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A., and Frenkel, D., Modeling the phase diagram of carbon. Phys. Rev. Lett. 94 (2005) 145701.Google Scholar
Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. K., and Goncharov, A. F., The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34 (1996) 141–53.Google Scholar
Togaya, M., Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79 (1997) 2474–7.Google Scholar
Bundy, F.P., Bovenkerk, H.P., Strong, H.M., and Wentorf, J. R. H., Diamond–graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35 (1961) 383.Google Scholar
Nelson, D. R., Piran, T., and Weinberg, S. (eds.), Statistical Mechanics of Membranes and Surfaces (Singapore: World Scientific, 2004).Google Scholar
Katsnelson, M. I., Graphene: Carbon in Two Dimensions (Cambridge: Cambridge University Press, 2012).Google Scholar
Katsnelson, M. I. and Fasolino, A., Graphene as a prototype crystalline membrane. Acc. Chem. Res. 46 (2013) 97105.CrossRefGoogle ScholarPubMed
Peierls, R. E., Bemerkungen über Umwandlungstemperaturen. Helv. Phys. Acta 7 (1934) 81–3.Google Scholar
Landau, L. D., Zur Theorie der Phasenumwandlungen II. Phys. Z. Sowjetunion 11 (1937) 2635.Google Scholar
Mermin, N. D., Crystalline order in two dimensions. Phys. Rev. 176 (1968) 250–4.CrossRefGoogle Scholar
Lifshitz, I. M., О тепловых свойствах цепных и слоистых структур при низких температурах [On thermal properties of chained and layered structures at low temperatures]. Zh. Eksp. Teor. Fiz. 22 (1952) 475–86.Google Scholar
Fasolino, A., Los, J. H., and Katsnelson, M. I., Intrinsic ripples in graphene. Nature Mater. 6 (2007) 858–61.Google Scholar
Los, J. H., Katsnelson, M. I., Yazyev, O. V., Zakharchenko, K. V., and Fasolino, A., Scaling properties of flexible membranes from atomistic simulations: Application to graphene. Phys. Rev. B 80 (2009) 121405 (R).Google Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I. et al., The structure of suspended graphene sheets. Nature 446 (2007) 60–3.Google Scholar
Zan, R., Muryn, C., Banger, U. et al., Scanning tunneling microscopy of suspended graphene. Nanoscale 4 (2012) 3065–8.CrossRefGoogle ScholarPubMed
Los, J. H., Ghiringhelli, L. M., Meijer, E. J., and Fasolino, A., Improved long-range reactive bond-order potential for carbon. I. Construction. Phys. Rev. B 72 (2005) 214102.Google Scholar
Bassani, F. and Parravicini, G. Pastori, Electronic States and Optical Transitions in Solids (Oxford: Pergamon, 1975).Google Scholar
Rudenko, A. N., Keil, F. J., Katsnelson, M. I., and Lichtenstein, A. I., Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene. Phys. Rev. B 88 (2013) 081405(R).Google Scholar
Wallace, P. R., The band theory of graphite. Phys. Rev. 71 (1947) 622–34.Google Scholar
McClure, J. W., Band structure of graphite and de Haas–van Alphen effect. Phys. Rev. 108 (1957) 612–18.Google Scholar
Slonczewski, J. S. and Weiss, P. R., Band structure of graphite. Phys. Rev. 109 (1958) 272–9.CrossRefGoogle Scholar
Tsidilkovsii, I. M., Electron Spectrum of Gapless Semiconductors (Berlin: Springer, 1996).Google Scholar
Katsnelson, M. I., Zitterbewegung, chirality, and minimal conductivity of graphene. Eur. Phys. J. B 51 (2006) 157–60.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 (2005) 197200.Google Scholar
Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P., Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438 (2005) 201–4.Google Scholar
Kretinin, A., Yu, G. L., Jalil, R. et al., Quantum capacitance measurements of electron–hole asymmetry and next-nearest-neighbor hopping in graphene. Phys. Rev. B 88 (2013) 165427.Google Scholar
Mañes, J. L., Guinea, F., and Vozmediano, M. A. H., Existence and topological stability of Fermi points in multi-layered graphene. Phys. Rev. B 75 (2007) 155424.Google Scholar
Tsidilkovsii, I. M., Band Structure of Semiconductors (Oxford: Pergamon, 1982).Google Scholar
Bjorken, J. D. and Drell, S. D., Relativistic Quantum Mechanics (New York: McGraw-Hill, 1964).Google Scholar
Kane, C. L. and Mele, E. J., Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95 (2005) 226801.Google Scholar
Huertas-Hernando, D., Guinea, F., and Brataas, A., Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74 (2006) 155426.Google Scholar
Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Chiral tunneling and the Klein paradox in graphene. Nature Phys. 2 (2006) 620–5.Google Scholar
Ando, T., Nakanishi, T., and Saito, R., Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Japan 67 (1998) 2857–62.Google Scholar
Novoselov, K. S., McCann, A., Morozov, S. V. et al., Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2 (2006) 177–80.CrossRefGoogle Scholar
McCann, E. and Fal’ko, V. I., Landau level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96 (2006) 086805.Google Scholar
Dresselhaus, M. S. and Dresselhaus, G., Intercalation compounds of graphite. Adv. Phys. 51 (2002) 1186.Google Scholar
Mayorov, A. S., Elias, D. C., Mucha-Kruczynski, M. et al., Interaction-driven spectrum reconstruction in bilayer graphene. Science 333 (2011) 860–3.CrossRefGoogle ScholarPubMed
Castro, E. V., Novoselov, K. S., Morozov, S. V. et al., Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99 (2007) 216802.Google Scholar
Oostinga, K. B., Heersche, H. B., Lie, X. et al., Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7 (2008) 151–7.CrossRefGoogle Scholar
Boukvalow, D. W. and Katsnelson, M. I., Tuning the gap in bilayer graphene using chemical functionalization: DFT calculations. Phys. Rev. B 78 (2008) 085413.Google Scholar
Low, T., Guinea, F., and Katsnelson, M. I., Gaps tunable by electrostatic gates in strained graphene. Phys. Rev. B 83 (2011) 195436.Google Scholar
Son, Y.-W., Cohen, M. L., and Louie, S., Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97 (2006) 216803.Google Scholar
Volovik, G. E., The Universe in a Helium Droplet (Oxford: Clarendon Press, 2003).Google Scholar
Qi, X.-L. and Zhang, S.-C., Topological insulators and superconductors. Rev. Mod. Phys. 83 (2011) 1057–110.Google Scholar
Zel’dovich, Ya. B. and Popov, V. S., Electronic structure of superheavy atoms. Sov. Phys. Uspekhi 14 (1972) 673–94.Google Scholar
Pereira, V. M., Nilsson, J., and Neto, A. H. Castro, Coulomb impurity problem in graphene. Phys. Rev. Lett. 99 (2007)166802.Google Scholar
Shytov, A. V., Katsnelson, M. I., and Levitov, L. S., Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett. 99(2007) 236801.Google Scholar
Shytov, A. V., Katsnelson, M. I., and Levitov, L. S., Atomic collapse and quasi-Rydberg states in graphene. Phys. Rev. Lett. 99 (2007) 246802.Google Scholar
Wang, Y., Wong, D., Shytov, A. V. et al., Observing atomic collapse resonances in artificial nuclei on graphene. Science 340 (2013) 734–7.Google Scholar
Nair, R. R., Blake, P., Grigorenko, A. N. et al., Fine structure constant defines visual transparency of graphene. Science 320 (2008) 1308.Google Scholar
Stander, N., Huard, B., and Goldhaber-Gordon, D., Evidence for Klein tunneling in graphene p–n junctions. Phys. Rev. Lett. 102 (2009) 026807Google Scholar
Young, A. F. and Kim, P., Quantum interference and Klein tunneling in graphene heterojunctions. Nature Phys. 5 (2009) 222–6Google Scholar
Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J. H., von Klitzing, K., and Yacoby, A., Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4 (2007) 144–8.Google Scholar

2.6 References

Novoselov, K. S. et al., Science 306, 666 (2004).CrossRefGoogle Scholar
Tan, Y. W. et al., Phys. Rev. Lett. 99, 246803 (2007).Google Scholar
Bolotin, K. I. et al., Solid State Commun. 146, 351 (2008).Google Scholar
Dean, C. R. et al., Nat. Nano. 5, 722 (2010).CrossRefGoogle Scholar
Stauber, T., Peres, N. M. R., and Guinea, F., Phys. Rev. B 76, 205423 (2007).CrossRefGoogle Scholar
Chen, J.-H. et al., Phys. Rev. Lett. 102, 236805 (2009).Google Scholar
Elias, D. C. et al., Science 323, 610 (2009).Google Scholar
Withers, F., Dubois, M., and Savchenko, A. K., Phys. Rev. B 82, 073403 (2010).Google Scholar
Adam, S. et al., Proc. Natl. Acad. Sci. USA 104, 18392 (2007).CrossRefGoogle Scholar
Chen, J.-H. et al., Nat. Phys. 4, 377 (2008).CrossRefGoogle Scholar
Jang, C. et al., Phys. Rev. Lett. 101, 146805 (2008).Google Scholar
Hwang, E. H. and Sarma, S. D., Phys. Rev. B 77, 115449 (2008).CrossRefGoogle Scholar
Fratini, S. and Guinea, F., Phys. Rev. B 77, 195415 (2008).Google Scholar
Chen, J.-H. et al., Nat. Nanotechnol. 3, 206 (2008).Google Scholar
Bolotin, K. I. et al., Phys. Rev. Lett. 101, 096802 (2008).Google Scholar
DaSilva, A. M. et al., Phys. Rev. Lett. 104, 236601 (2010).Google Scholar
Katsnelson, M. I. and Geim, A. K., Philos. Trans. Royal Soc. London A 366, 195 (2008).Google Scholar
Ishigami, M. et al., Nano Lett. 7, 1643 (2007).Google Scholar
Cullen, W. G. et al., Phys. Rev. Lett. 105, 215504 (2010).Google Scholar
Shon, N. H. and Ando, T., J. Phys. Soc. Jpn 67, 2421 (1998).Google Scholar
Das Sarma, S. et al., Rev. Mod. Phys. 83, 407 (2011).Google Scholar
Novoselov, K. S. et al., Nature 438, 197 (2005).Google Scholar
Tan, Y. W. et al., Euro. Phys. J. Special Topics 148, 15 (2007).Google Scholar
Morozov, S. V. et al., Phys. Rev. Lett. 100, 016602 (2008).Google Scholar
Ando, T., J. Phys. Soc. Jpn 75, 074716 (2006).Google Scholar
Nomura, K. and MacDonald, A. H., Phys. Rev. Lett. 98, 076602 (2007).Google Scholar
Cheianov, V. V. and Fal’ko, V. I., Phys. Rev. Lett. 97, 226801 (2006).Google Scholar
Hwang, E. H., Adam, S., and Das Sarma, S., Phys. Rev. Lett. 98, 186806 (2007).Google Scholar
Adam, S., Hwang, E. H., and Das Sarma, S., Physica E 40, 1022 (2008).Google Scholar
Novikov, D. S., Appl. Phys. Lett. 91, 102102 (2007).Google Scholar
Van Mieghem, P., Rev. Mod. Phys. 64, 755 (1992).Google Scholar
Ponomarenko, L. A. et al., Phys. Rev. Lett. 102, 206603 (2009).Google Scholar
Sanfelix, P. Cabrera et al., Surface Science 532 –535, 166 (2003).Google Scholar
Stoddart, J. C., March, N. H., and Stott, M. J., Phys. Rev. 186, 683 (1969).Google Scholar
Mezei, F. and Grüner, G., Phys. Rev. Lett. 29, 1465 (1972).Google Scholar
Titov, M. et al., Phys. Rev. Lett. 104, 076802 (2010).Google Scholar
Wehling, T. O. et al., Phys. Rev. Lett. 105, 056802 (2010).Google Scholar
Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Nat. Phys. 2, 620 (2006).Google Scholar
Hentschel, M. and Guinea, F., Phys. Rev. B 76, 115407 (2007).Google Scholar
Boukhvalov, D. W., Katsnelson, M. I., and Lichtenstein, A. I., Phys. Rev. B 77, 035427 (2008).Google Scholar
Ferreira, A. et al., Phys. Rev. B 83, 165402 (2011).Google Scholar
Ni, Z. H. et al., Nano Lett. 10, 3868 (2010).Google Scholar
Ryu, S. et al., Nano Lett. 8, 4597 (2008).Google Scholar
Katoch, J. et al., Phys. Rev. B 82, 081417 (2010).CrossRefGoogle Scholar
Hong, X. et al., Phys. Rev. B 83, 085410 (2011).Google Scholar
Guillemette, J. et al., Phys. Rev. Lett. 110, 176801 (2013).Google Scholar
Balakrishnan, J. et al., Nat. Phys. 9, 284 (2013).Google Scholar
Stabile, A. A. et al., Phys. Rev. B 92, 121411 (2015).Google Scholar
Matis, B. R. et al., Phys. Rev. B 85, 195437 (2012).Google Scholar
Chen, J.-H. et al., Nat. Phys. 7, 535 (2011).Google Scholar
Chen, J.-H. et al., Nat. Phys. 8, 353 (2012).Google Scholar
Hong, X. et al., Phys. Rev. Lett. 108, 226602 (2012).Google Scholar
McCreary, K. M. et al., Phys. Rev. Lett. 109, 186604 (2012).Google Scholar
Stolyarova, E. et al., PNAS 104, 9209 (2007).Google Scholar
Geringer, V. et al., Phys. Rev. Lett. 102, 076102 (2009).Google Scholar
Fasolino, A., Los, J. H., and Katsnelson, M. I., Nat. Mater. 6, 858 (2007).Google Scholar
Katsnelson, M. I. and Geim, A. K., Phil. Trans. R. Soc. A 366, 195 (2008).Google Scholar
Thompson-Flagg, R. C., Moura, M. J. B., and Marder, M., Europhys. Lett. 85, 46002 (2009).Google Scholar
Aranda-Espinoza, H. and Lavallee, D., Europhys. Lett. 43, 355 (1998).Google Scholar
Goldberg, J. L. et al., Surf. Sci. Lett. 249, L285 (1991).Google Scholar
Chen, J.-H. et al., Solid State Commun. 149, 1080 (2009).Google Scholar
Hess, K. and Vogl, P., Solid State Commun. 30, 807 (1979).Google Scholar
Fischetti, M. V., Neumayer, D. A., and Cartier, E. A., J. Appl. Phys. 90, 4587 (2001).CrossRefGoogle Scholar
Perebeinos, V. et al., Nano Lett. 9, 312 (2009).Google Scholar
Freitag, M. et al., Nano Lett. 9, 1883 (2009).Google Scholar
Steiner, M. et al., Nat. Nano. 4, 320 (2009).Google Scholar
Ochoa, H. et al., Physica E 44, 963 (2012).Google Scholar
Sugihara, K., Kawamura, K., and Tsuzuku, T., J. Phys. Soc. Jpn. 47, 1210 (1979).Google Scholar

3.5 References

Novoselov, KS, Geim, AK, Morozov, SV et al. Electric field effect in atomically thin carbon films. Science 2004, 306: 666.Google Scholar
Wallace, PR. The band theory of graphite. Phys Rev 1947, 71: 622–34.Google Scholar
Slonczewski, JC. PRW. Band structure of graphite. Phys Rev 1958, 109: 272–9.Google Scholar
Castro Neto, AH, Guinea, F, Peres, NMR et al. The electronic properties of graphene. Rev Mod Phys 2009, 81: 109–62.CrossRefGoogle Scholar
Wang, F, Zhang, Y, Tian, C et al. Gate-variable optical transitions in graphene. Science 2008, 320: 206–9.Google Scholar
Li, ZQ, Henriksen, EA, Jiang, Z et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 2008, 4: 69.Google Scholar
Horng, J, Chen, C-F, Geng, B et al. Drude conductivity of Dirac fermions in graphene. Phys Rev B 2011, 83: 165113.Google Scholar
Ju, L, Geng, B, Horng, J et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 2011, 6: 630–4.Google Scholar
Yan, H, Li, X, Chandra, B et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 2012, 7: 330–4.Google Scholar
Mak, KF, Sfeir, MY, Misewich, JA et al. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci 2010, 107: 14999–5004.Google Scholar
Basov, DN, Averitt, RD, van der Marel, D et al. Electrodynamics of correlated electron materials. Rev Mod Phys 2011, 83: 471541.Google Scholar
Deshpande, A, Bao, W, Miao, F et al. Spatially resolved spectroscopy of monolayer graphene on SiO2. Phys Rev B 2009, 79: 205411.Google Scholar
Kuzmenko, AB, Van Heumen, E, Van Der Marel, D et al. Infrared spectroscopy of electronic bands in bilayer graphene. Phys Rev B – Condens Matter Mater Phys 2009, 79: 15.Google Scholar
Mak, KF, Lui, CH, Shan, J et al. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 2009, 102: 256405.Google Scholar
Nair, RR, Grigorenko, AN, Blake, P et al. Fine structure constant defines visual transparency of graphene. Science (80-) 2008, 320: 1308.Google Scholar
Zhang, Y, Tang, T-T, Girit, C et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459: 820–3.Google Scholar
Dawlaty, JM, Shivaraman, S, Strait, J et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 2008, 93: 131905.Google Scholar
Tomaino, JL, Jameson, AD, Kevek, JW et al. Terahertz imaging and spectroscopy of large area single-layer graphene. Opt Express 2011, 19: 141–6.Google Scholar
Sensale-Rodriguez, B, Yan, R, Kelly, MM et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 2012, 3: 780.Google Scholar
Crassee, I, Levallois, J, Walter, AL et al. Giant Faraday rotation in single- and multilayer graphene. Nat Phys 2011, 7: 4851.Google Scholar
Henriksen, EA, Cadden-Zimansky, P, Jiang, Z et al. Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy. Phys Rev Lett 2010, 104: 14.Google Scholar
Jiang, Z, Henriksen, EA, Tung, LC et al. Infrared spectroscopy of Landau levels of graphene. Phys Rev Lett 2007, 98: 14.Google Scholar
Li, X, Cai, W, An, J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80–) 2009, 324: 1312–14.Google Scholar
Kim, KS, Zhao, Y, Jang, H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457: 706–10.Google Scholar
Ando, T, Zheng, Y, Suzuura, H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J Phys Soc Japan 2002, 71: 1318–24.Google Scholar
Abedinpour, SH, Vignale, G, Principi, A et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys Rev B - Condens Matter Mater Phys 2011, 84: 114.Google Scholar
Gusynin, VP, Sharapov, SG, Carbotte, JP. Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett 2006, 96: 256802.Google Scholar
Peres, NMR, Lopes dos Santos, JMB, Stauber, T. Phenomenological study of the electronic transport coefficients of graphene. Phys Rev B 2007, 76: 073412.Google Scholar
Peres, NMR. Colloquium: The transport properties of grapheme – an introduction. Rev Mod Phys 2010, 82: 2673–700.Google Scholar
Koshino, M, Ando, T. Magneto-optical properties of multilayer graphene. Phys Rev B 2008, 77: 115313.Google Scholar
Stauber, T, Peres, NMR, Geim, AK. Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 2008, 78: 085432.Google Scholar
Mak, KF, Shan, J, Heinz, TF. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 2010, 104: 14.Google Scholar
Das Sarma, S, Adam, S, Hwang, EH et al. Electronic transport in two-dimensional graphene. Rev Mod Phys 2011, 83: 407–70.Google Scholar
Mak, KF, Sfeir, MY, Wu, Y et al. Measurement of the optical conductivity of graphene. Phys Rev Lett 2008, 101: 196405.Google Scholar
Mak, KF, Ju, L, Wang, F et al. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun 2012, 152: 1341–9.Google Scholar
Efetov, DK, Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 2010, 105: 25.Google Scholar
Chen, C-F, Park, C-H, Boudouris, BW et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 471: 617–20.Google Scholar
Liu, M, Yin, X, Ulin-Avila, E et al. A graphene-based broadband optical modulator. Nature 2011, 474: 64–7.Google Scholar
Novoselov, KS, Geim, AK, Morozov, SV et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438: 197200.Google Scholar
Zhang, Y, Tan, YW, Stormer, HL et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438: 201–4.Google Scholar
Ashcroft, NW with Mermin, ND. Solid State Physics. Thomson Learning, USA, 1976.Google Scholar
Castro Neto, AH, Peres, NMR, Novoselov, KS et al. The electronic properties of graphene. Rev Mod Phys 2009, 81: 109–62.Google Scholar
Nomura, K, MacDonald, AH. Quantum transport of massless Dirac fermions. Phys Rev Lett 2007, 98: 076602.Google Scholar
Hwang, EH, Adam, S, Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys Rev Lett 2007, 98: 25.Google Scholar
Basov, DN, Fogler, MM, Lanzara, A et al. Colloquium: Graphene spectroscopy. Rev Mod Phys 2014, 86: 959–94.Google Scholar
Kossacki, P, Faugeras, C, Kühne, M et al. Circular dichroism of magneto-phonon resonance in doped graphene. Phys Rev B 2012, 86: 205431.Google Scholar
Chen, HT, Padilla, WJ, Zide, JMO et al. Active terahertz metamaterial devices. Nature 2006, 444: 597.Google Scholar
Pendry, JB, Holden, AJ, Stewart, WJ. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 1996, 76: 4773–6.Google Scholar
Yen, TJ, Padilla, WJ, Fang, N et al. Terahertz magnetic response from artificial materials. Science (80–) 2004, 303: 1494–6.Google Scholar
Hwang, EH, Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 2007, 75: 205418.Google Scholar
Wunsch, B, Stauber, T, Sols, F et al. Dynamical polarization of graphene at finite doping. New J Phys 2006, 8: 318.Google Scholar
Batke, E, Heitmann, D, Tu, C. Plasmon and magnetoplasmon excitation in two-dimensional electron space-charge layers on GaAs. Phys Rev B 1986, 34: 6951–60.Google Scholar
Allen, SJ, Tsui, DC, Logan, RA. observation of the 2D plasmon in Si inversion layers. Phys Rev Lett 1977, 3: 980.Google Scholar
Barlas, Y, Côté, R, Rondeau, M. Quantum hall to charge-density-wave phase transitions in ABC-trilayer graphene. Phys Rev Lett 2012, 109: 15.Google Scholar
Barlas, Y, Côté, R, Lambert, J et al. Anomalous exciton condensation in graphene bilayers. Phys Rev Lett 2010, 104: 14.Google Scholar
Vafek, O, Yang, K. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys Rev B 2010, 81: 041401.Google Scholar
Nilsson, J, Castro Neto, AH, Peres, NMR et al. Electron–electron interactions and the phase diagram of a graphene bilayer. Phys Rev B - Condens Matter Mater Phys 2006, 73: 110.Google Scholar
Nandkishore, R, Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys Rev B 2010, 82: 115124.Google Scholar
Nandkishore, R, Levitov, L. Dynamical screening and excitonic instability in bilayer graphene. Phys Rev Lett 2010, 104: 36.Google Scholar
Min, H, Borghi, G, Polini, M et al. Pseudospin magnetism in graphene. Phys Rev B - Condens Matter Mater Phys 2008, 77: 25.Google Scholar
Kuzmenko, AB, Crassee, I, Van Der Marel, D et al. Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys Rev B – Condens Matter Mater Phys 2009, 80: 112.Google Scholar
Ohta, T, Bostwick, A, Seyller, T et al. Controlling the electronic structure of bilayer graphene. Science 2006, 313: 951–4.Google Scholar
Castro, EV, Novoselov, KS, Morozov, SV et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 2007, 99: 216802.Google Scholar
McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 2006, 74: 161403.Google Scholar
McCann, E, Fal’ko, VI. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett 2006, 96: 086805.Google Scholar
Siegel, DA, Hwang, CG, Fedorov, AV et al. Quasifreestanding multilayer graphene films on the carbon face of SiC. Phys Rev B – Condens Matter Mater Phys 2010, 81: 15.CrossRefGoogle Scholar
Oostinga, JB, Heersche, HB, Liu, X et al. Gate-induced insulating state in bilayer graphene devices. Nat Mater 2008, 7: 151–7.Google Scholar
Xia, F, Farmer, DB, Lin, Y et al. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 2010, 10: 715–18.Google Scholar

4.8 References

Pedretti, C., The Codex Atlanticus of Leonardo Da Vinci: A Catalogue of Its Newly Restored Sheets, Johnson Reprint Corporation, 1978.Google Scholar
Galileo, G., Discorsi e dimostrazioni matematiche, intorno a due nuove scienze attenenti alla mecanica & i movimenti locali, 1638. Translated as Dialogues Concerning Two New Sciences, translated by Crew, H. and de Salvio, A.. Macmillan, 1914.Google Scholar
Mariotte, E., Traité du mouvement des eaux et des autres corps fluides. C.-Jombert, 1718.Google Scholar
Griffith, A. A., “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 221, pp. 163–98, 1921.Google Scholar
Lee, G. H., Cooper, R. C., An, S. J., et al., “High-strength chemical-vapor-deposited graphene and grain boundaries,” Science, vol. 340, pp. 1073–6, 2013.Google Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–8, 2008.Google Scholar
Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B., and Weng, T., “Elastic constants of compression-annealed pyrolytic graphite,” Journal of Applied Physics, vol. 41, pp. 3373–82, 1970.Google Scholar
Yu, M., Files, B., Arepalli, S., and Ruoff, R., “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Physical Review Letters, vol. 84, pp. 5552–5, 2000.Google Scholar
Weibull, W., “A statistical theory of the strength of materials,” Proceedings of the Royal Swedish Institute of Engineering Research, vol. 151, 1939.Google Scholar
Weibull, W., “Wide applicability,” Journal of Applied Mechanics, vol. 18, 1951.Google Scholar
Lawn, B., Fracture of Brittle Solids, Cambridge University Press, pp. 1178, 1993.Google Scholar
Barber, A. H., Kaplan-Ashiri, I., Cohen, S. R., Tenne, R., and Wagner, H. D., “Stochastic strength of nanotubes: An appraisal of available data,” Composites Science and Technology, vol. 65, pp. 2380–4, 2005.Google Scholar
Pugno, N. M., “On the strength of the carbon nanotube-based space elevator cable: From nanomechanics to megamechanics,” Journal of Physics: Condensed Matterials, vol. 18, pp. S1971S1990, 2006.Google Scholar
Pugno, N. M. and Ruoff, R. S., “Nanoscale Weibull statistics,” Journal of Applied Physics, vol. 99, pp. 04, 2006.Google Scholar
Stolyarova, E., Rim, K. T., Ryu, S., et al., “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 9209–12, 2007.Google Scholar
McClintock, F. A. and Argon, A. S., Mechanical Behavior of Materials, Addison-Wesley, 1966.Google Scholar
El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I., and Briddon, P. R., “Structure and energetics of the vacancy in graphite,” Physical Review B, vol. 68, 144107, 2003.Google Scholar
Wei, X. D., Fragneaud, B., Marianetti, C. A., and Kysar, J. W., “Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description,” Physical Review B, vol. 80, pp. 18, 2009.Google Scholar
Arruda, E. M. and Boyce, M. C., “A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials,” Journal of the Mechanics and Physics of Solids, vol. 41, pp. 389412, 1993.Google Scholar
Ogden, R. W., “Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids,” Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, vol. 328, pp. 567–83, 1972.Google Scholar
Mooney, M., “A theory of large elastic deformation,” Journal of Applied Physics, vol. 11, pp. 582–92, 1940.Google Scholar
Smith, G. F. and Rivlin, R. S., “The strain–energy function for anisotropic elastic materials,” Transactions of the American Mathematical Society, Vol. 88, pp. 175–93, 1958.Google Scholar
Tong, P. and Fung, Y.C., “The stress–strain relationship for the skin,” Journal of Biomechanics, vol. 9, pp. 649657, 1976.Google Scholar
Kumar, S. and Parks, D. M., “A comprehensive lattice-stability limit surface for graphene,” cond-mat.mtrl-sci arXiv:1503.03944v2, March 16, 2014.Google Scholar
Baskin, Y. and Meyer, L., “Lattice constants of graphite at low temperatures,” Physical Review, vol. 100, 544, 1955.Google Scholar
Cooper, R. C., Lee, C., Marianetti, C. A., Wei, X., Hone, J., and Kysar, J. W., “Nonlinear elastic behavior of two-dimensional molybdenum disulfide,” Physical Review B – Condensed Matter and Materials Physics, vol. 87, 035423, 2013.Google Scholar
Cooper, R. C., Kysar, J. W., and Marianetti, C. A., “Comment on ‘ideal strength and phonon instability in single-layer MoS2’,” Physical Review B – Condensed Matter and Materials Physics, vol. 90, pp. 13, 2014.Google Scholar
Cadelano, E., Palla, P. L., Giordano, S., and Colombo, L., “Nonlinear elasticity of monolayer graphene,” Physical Review Letters, vol. 102, pp. 14, 2009.Google Scholar
Liu, F., Ming, P., and Li, J., “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Physical Review B – Condensed Matter and Materials Physics, vol. 76, pp. 17, 2007.Google Scholar
Wei, X. and Kysar, J. W., “Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes,” International Journal of Solids and Structures, vol. 49, pp. 3201–9, 2012.Google Scholar
Gao, Y. F. and Bower, A. F., “A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces,” Modelling and Simulation in Materials Science and Engineering, vol. 12, pp. 453–63, 2004.Google Scholar
Kumar, S. and Parks, D. M., “On the hyperelastic softening and elastic instabilities in graphene,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 471, 2014.Google Scholar
Marianetti, C. A. and Yevick, H. G., “Failure mechanisms of graphene under tension,” Physical Review Letters, vol. 105, pp. 14, 2010.Google Scholar
Caughey, T. K. and Shield, R. T., “Instability and the energy criterion for continuous systems,” Journal of Applied Mathematics and Physics vol. 19, pp. 485–92, 1968.Google Scholar
Koenig, S. P., Wang, L., Pellegrino, J., and Bunch, J. S., “Selective molecular sieving through porous graphene,” Nature Nanotechnology, vol. 7, pp. 728–32, 2012.Google Scholar
Cançado, L. G., Jorio, A., Ferreira, E. H. M., et al., “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Letters, vol. 11, pp. 3190–6, 2011.Google Scholar
Kim, D. C., Jeon, D.-Y., Chung, H.-J., Woo, Y., Shin, J. K., and Seo, S., “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology, vol. 20, 375703, 2009.Google Scholar
Lucchese, M. M., Stavale, F., Ferreira, E. H. M., et al., “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon, vol. 48, pp. 1592–7, 2010.Google Scholar
Eckmann, A., Felten, A., Mishchenko, A., et al., “Probing the nature of defects in graphene by Raman spectroscopy,” Nano Letters, vol. 12, pp. 3925–30, 2012.Google Scholar
Araujo, P. T., Terrones, M., and Dresselhaus, M. S., “Defects and impurities in graphene-like materials,” Materials Today, vol. 15, pp. 98109, 2012.Google Scholar
Zandiatashbar, A., Lee, G. H., An, S. J., et al., “Effect of defects on the intrinsic strength and stiffness of graphene,” Nature Communications, vol. 5, p. 3186, 2014.Google Scholar
Grantab, R., Shenoy, V. B., and Ruoff, R. S., “Anomalous strength characteristics of tilt grain boundaries in graphene,” Science, vol. 1456, pp. 1013, 2010.Google Scholar
Lu, Q. and Huang, R., “Nonlinear mechanics of single-atomic-layer graphene sheets,” International Journal of Applied Mechanics, vol. 01, pp. 443–67, 2009.Google Scholar

5.6 References

Dresselhaus, M. S., Dresselhaus, G., and Jorio, A., Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).Google Scholar
Malard, L. M., Guimarães, M. H. D., Mafra, D. L., Mazzoni, M. S. C., and Jorio, A., Group-theory analysis of electrons and phonons in N-layer graphene systems. Physical Review B, 79 (2009), 125426.Google Scholar
Ribeiro-Soares, J., Almeida, R. M., Cançado, L. G., Dresselhaus, M. S., and Jorio, A., Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review B, 91 (2015), 205421.Google Scholar
Reich, S. and Thomsen, C., Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362:1824 (2004), 2271–88.Google Scholar
Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143:1 (2007), 4757.Google Scholar
Jorio, A., Dresselhaus, M. S., and Saito, R., Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, 2011).Google Scholar
Ferrari, A. C. and Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8 (2013), 235–46.Google Scholar
Huang, M., Yan, H., Chen, C., Song, D., Heinz, T. F., and Hone, J., Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proceedings of the National Academy of Sciences, 106:18 (2009), 7304–8.Google Scholar
Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U.V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., and Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 3:4 (2008), 210–15.Google Scholar
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Ning Lau, C., Superior thermal conductivity of single-layer graphene. Nano Letters, 8:3(2008), 902–7.Google Scholar
Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., and Chabal, Y. J., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials, 9(2010), 840–5.Google Scholar
Dovbeshko, G., Gnatyuk, O., Fesenko, O., Rynder, A., and Posudievsky, O., Enhancement of infrared absorption of biomolecules absorbed on single-wall carbon nanotubes and graphene nanosheets. Journal of Nanophotonics, 6:1 (2012), 061711.Google Scholar
Zhang, L. M., Li, Z. Q., Basov, D. N., Fogler, M. M., Hao, Z., and Martin, M. C., Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Physical Review B, 78:23 (2008), 235408.Google Scholar
Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., and Basov, D. N., Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 4:7 (2008), 532–5.Google Scholar
Venezuela, P., Lazzeri, M., and Mauri, F., Theory of double-resonant Raman spectra in graphen: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B, 84 (2011), 035433.Google Scholar
Jorio, A. and Cançado, L. G.. Raman spectroscopy of twisted bilayer graphene. Solid State Communications, 1756 (2013), 312Google Scholar
Wirtz, L. and Rubio, A., The phonon dispersion of graphite revisited. Solid State Communications, 131:3 (2004), 141–52.Google Scholar
Dubay, O., Kresse, G., and Kuzmany, H., Phonon softening in metallic nanotubes by a Peierls-like mechanism. Physical Review Letters, 88(2002), 235506.Google Scholar
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C., and Robertson, J., Kohn anomalies and electron–phonon interactions in graphite. Physical Review Letters, 93:18 (2004), 185503.Google Scholar
Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K., Ferrari, A. C., and Mauri, F., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, 6:3 (2007), 198201.Google Scholar
Lazzeri, M., Attaccalite, C., Wirtz, L., and Mauri, F., Impact of the electron–electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78:8 (2008), 081406.Google Scholar
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., and Thomsen, C., Phonon dispersion of graphite by inelastic X-ray scattering. Physical Review B, 76:3 (2007), 035439.Google Scholar
Grüneis, A., Serrano, J., Bosak, A., Lazzeri, M., Molodtsov, S. L., Wirtz, L., and Pichler, T., Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Physical Review B, 80:8 (2009), 085423.Google Scholar
Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., and Pimenta, M. A., Probing phonon dispersion relations of graphite by double resonance Raman scattering. Physical Review Letters, 88 (2001), 027401.Google Scholar
Mafra, D. L., Samsonidze, G., Malard, L. M., Elias, D. C., Brant, J. C., Plentz, F., Alves, E. S., and Pimenta, M. A., Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Physical Review B, 76:23 (2007), 233407.Google Scholar
Frank, O., Mohr, M., Maultzsch, J., Thomsen, C., Riaz, I., Jalil, R., and Galiotis, C., Raman 2D-band splitting in graphene: theory and experiment. ACS Nano, 5:3 (2011), 2231–9.Google Scholar
Carozo, V., Almeida, C. M., Ferreira, E. H. M., Cançado, L. G., Achete, C. A., and Jorio, A., Raman signature of graphene superlattices. Nano Letters, 11:11 (2011), 4527–34.Google Scholar
Righi, A., Costa, S. D., Chacham, H., Fantini, C., Venezuela, P., Magnuson, C., Colombo, L., Bacsa, W. S., Ruoff, R. S., and Pimenta, M. A., Graphene moiré patterns observed by Umklapp double-resonance Raman scattering. Physical Review B, 84:24(2011), 241409.Google Scholar
Campos-Delgado, J., Cançado, L. G., Achete, C. A., Jorio, A., and Raskin, J.-P., Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Research, 6:4 (2013), 269–74.Google Scholar
Thomsen, C. and Reich, S., Double resonant Raman scattering in graphite. Physical Review Letters, 85 (2000), 5214.Google Scholar
Bernard, S., Whiteway, E., Yu, V., Austing, D. G., and Hilke, M., Probing the experimental phonon dispersion of graphene using 12C and 13C isotopes. Physical Review B, 86 (2012), 085409.Google Scholar
Carozo, V., Almeida, C. M., Fragneaud, B., Bedê, P., Moutinho, J., Ribeiro-Soares, M. V. O., Andrade, N., Souza Filho, A. G., Matos, M. J. S., Wang, B., Terrones, M., Capaz, R. B., Jorio, A., Achete, C. A., and Cançado, L. G., Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 88 (2013), 085401.Google Scholar
Lui, C. H., Malard, L. M., Kim, S. H., Lantz, G., Leverge, F. E., Saito, R., and Heinz, T., Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12:11 (2012), 5539–44.Google Scholar
Kim, K., Coh, S., Tan, L. Z., Regan, W., Yuk, J. M., Chatterjee, E., Crommie, M. F., Cohen, M. L., Louie, S. G., and Zettl, A., Raman spectroscopy study of ratated double-layer graphene: misorientation-angle dependence of electronic structure. Physical Review Letters, 108 (2012), 246103.Google Scholar
Havener, R. W., Zhuang, H., Brown, L., Hennig, R. G., and Park, J., Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Letters, 12:6 (2012), 3162–7.Google Scholar
Wang, Y., Su, Z., Wu, W., Nie, S., Xie, N., Gong, H., Guo, Y., Lee, J. H., Xing, X., Lu, S., Wang, H., Lu, X., McCarty, K., Pei, F., Robles-Hernandez, S., Hadjiev, V. G., and Bao, J., Twisted bilayer graphene superlattices, arXiv:1301.4488v1.Google Scholar
Li, P. and Appelbaum, I., Electrons and holes in phosphorene. Physical Review B, 90 (2014), 115439.Google Scholar
Takeda, K. and Shiraishi, K., Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 50 (1994), 14916.Google Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (2006), 187401.Google Scholar
Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports, 473:5–6 (2009), 5188.Google Scholar
Cançado, L. G., Reina, A., Kong, J., and Dresselhaus, M. S., Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Physical Review B, 77 (2008), 245408.Google Scholar
Nicklow, R., Wakabayashi, N., and Smith, H. G., Lattice dynamics of pyrolytic graphite. Physical Review B, 5 (1972), 4951–62.Google Scholar
Yin, M. T. and Cohen, M. L., Structural theory of graphite and graphitic silicon. Physical Review B, 29 (1984), 6996.Google Scholar
Jiang, Jin-Wu, Tang, Hui, Wang, Bing-Shen, and Su, Zhao-Bin, Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Physical Review B, 77 (2008), 235421.Google Scholar
Michel, K. H. and Verberck, B., Theory of rigid-plane phonon modes in layered crystals. Physical Review B, 85 (2012), 094303.Google Scholar
Popov, V. N. and Van Alsenoy, C., Low-frequency phonons of few-layer graphene within a tight-binding model. Physical Review B, 90 (2014), 245429.Google Scholar
Tan, P. H., Han, W. P., Zhao, W. J., Wu, Z. H., Chang, K., Wang, H., Wang, Y. F., Bonini, N., Marzari, N., Pugno, N., Savini, G., Lombardo, A., and Ferrari, A. C., The shear mode of multilayer graphene. Nature Materials, 11 (2012), 294300.Google Scholar
Boschetto, D., Malard, L., Lui, C. H., Mak, K. F., Li, Z., Yan, H., and Heinz, T. F., Real-time observation of interlayer vibrations in bilayer and few-layer graphene. Nano Letters, 13 (2013), 4620–3.Google Scholar
Lui, C. H., Malard, L. M., Kim, S., Lantz, G., Laverge, F. E., Saito, R., and Heinz, T. F., Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12 (2012), 5539–44.Google Scholar
Lui, C. H. and Heinz, T. F., Measurement of layer breathing mode vibrations in few-layer graphene. Physical Review B, 87 (2013), 121404(R).Google Scholar
Cong, Chunxiao and Yu, Ting, Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nature Communications, 5 (2014), 4709.Google Scholar
Lui, C. H., Ye, Z., Keiser, C., Xiao, X., and He, R., Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Letters, 14 (2014), 4615–21.Google Scholar
Mishina, T., Nitta, K., and Masumoto, K. Y., Coherent lattice vibration of interlayer shearing mode of graphite. Physical Review B, 62 (2000), 2908.Google Scholar
Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., and Tan, P. H., Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87 (2013), 115413.Google Scholar
Zhang, X., Qiao, X. F., Shi, W., Wu, J.B., Jiang, D. S., and Tan, P. H., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Review, 44 (2015), 2757–85.Google Scholar
Zhao, Y., Luo, X., Li, H., Zhang, J., Araujo, P. T., Gan, C. K., Wu, J., Zhang, H., Quek, S. Y., Dresselhaus, M. S., and Xiong, Q., Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Letters, 13 (2013), 1007–15.Google Scholar
Liu, K., Zhang, L., Cao, T., Jin, C., Qiu, D., Zhou, Q., Zettl, A., Yang, P., Louie, S. G., and Wang, F., Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications, 5 (2014), 4966.Google Scholar
Lui, C. H., Ye, Z., Ji, C., Chiu, K. C., Chou, C. T., Andersen, T. I., Means-Shively, C., Anderson, H., Wu, J. M., Kidd, T., Lee, Y. H., and He, R., Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B, 91 (2015), 165403.CrossRefGoogle Scholar
Ge, S., Liu, X., Qiao, X., Wang, Q., Xu, Z., Qiu, J., Tan, P. H., Zhao, J., and Sun, D., Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Scientific Reports, 4 (2014), 5722.Google Scholar
Wu, Jiang-Bin, Hu, Zhi-Xin, Zhang, X., Han, Wen-Peng, Lu, Y., Shi, W., Qiao, Xiao-Fen, Ijiäs, M., Milana, S., Ji, W., Ferrari, A. C., and Tan, Ping-Heng, Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano, 9 (2015), 7440–9.Google Scholar
Gardiner, D. J., Practical Raman Spectroscopy. (Springer-Verlag, 1989).Google Scholar
Steiner, M., Freitag, M., Perebeinos, V., Tsang, J. C., Small, J. P., Kinoshita, M., Yuan, D., Liu, J., and Avouris, P.. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nature Nanotechnology, 4 (2009), 320.Google Scholar
Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., and Geim, A. K., Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 4 (2010), 1889.Google Scholar
Berciaud, S., Han, M. Y., Mak, K. F., Brus, L. E., Kim, P., and Heinz, T. F., Electron and optical phonon temperatures in electrically biased graphene. Physical Review Letters, 104 (2010), 227401.Google Scholar
Bonini, N., Lazzeri, M., Marzari, N., and Mauri, F., Phonon anharmonicities in graphite and graphene. Physical Review Letters, 99 (2007), 176802.Google Scholar
Song, D., Wang, F., Dukovic, G., Zheng, M., Semke, E. D., Brus, L. E., and Heinz, T. F., Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Physical Review Letters, 100 (2008), 225503.Google Scholar
Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., Saito, R., Hafner, J. H., Lieber, C. M., Matinaga, F. M., Dantas, M. S. S., and Pimenta, M. A., Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B, 63 (2001), 245416.Google Scholar
Souza Filho, A. G., Jorio, A., Hafner, J. H., Lieber, C. M., Saito, R., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Electronic transition energy Eii for an isolated (n, m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B, 63 (2001), 241404(R).Google Scholar
Klyshko, D. N., Correlation between the Stokes and anti-Stokes components in inelastic scattering of light. Soviet Journal of Quantum Electronics, 7 (1977), 755.Google Scholar
Jorio, A., Kasperczyk, M., Clark, N., Neu, E., Maletinsky, P., Vijayaraghavan, A., and Novotny, L., Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene. Nano Letters, 14 (2014), 5687.Google Scholar
Parra-Murillo, C. A., Santos, M. F., Monken, C. H., and Jorio, A., Stokes–anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose–Einstein population function. Physical Review B, 93 (2016), 125141.Google Scholar
Kasperczyk, M., de Aguiar Júnior, F. S., Rabelo, C., Saraiva, A., Santos, M. F., Novotny, L., and Jorio, A.. Temporal quantum correlations in inelastic light scattering from water. Physical Review Letters, 117 (2016), 243603.Google Scholar
Kang, K., Abdula, D., Cahill, D.G., and Shim, M.. Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes–Raman scattering. Physical Review B, 81 (2010), 165405.Google Scholar
Lee, K. C., Sussman, B. J., Sprague, M. R., Michelberger, P., Reim, K. F., Nunn, J., Langford, N. K., Bustard, P. J., Jaksch, D., and Walmsley, I. A., Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nature Photonics, 6 (2012), 41.Google Scholar
Kasperczyk, M., Jorio, A., Neu, E., Maletinksy, P., and Novotny, L., Stokes–anti-Stokes correlations in Raman scattering from diamond membranes. Optics Letters, 40 (2015), 2393.Google Scholar
Carter, W. H. and Wolf, E., Coherence properties of Lambertian and non-Lambertian sources. Journal of the Optical Society of America, 65 (1975), 1067.Google Scholar
Carminati, R. and Greffet, J.-J., Near-field effects in spatial coherence of thermal sources. Physical Review Letters, 82 (1999), 1660.Google Scholar
Shchegrov, A. V., Joulain, K., Carminati, R., and Greffet, J.-J., Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 85 (2000), 1548.Google Scholar
Roychowdhury, H. and Wolf, E., Effects of spatial coherence on near-field spectra. Optics Letters, 28 (2003), 170.Google Scholar
Apostol, A. and Dogariu, A., Spatial correlations in the near field of random media. Physical Review Letters, 91 (2003), 093901.Google Scholar
Cançado, L. G., Beams, R., Jorio, A., and Novotny, L., Theory of spatial coherence in near-field Raman scattering. Physical Review X, 4 (2014), 031054.Google Scholar
Beams, R., Cançado, L. G., Oh, S.-H., Jorio, A., and Novotny, L., Spatial coherence in near-field Raman scattering. Physical Review Letters, 113 (2014), 186101.Google Scholar
Richter, H., Wang, Z. P., and Ley, L., The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39 (1981), 625.Google Scholar
Ribeiro-Soares, J., Oliveros, M. E., Garin, C., David, M. V., Martins, L. G. P., Almeida, C. A., Martins-Ferreira, E. H., Takai, K., Enoki, T., Magalhães-Paniagoa, R., Malachias, A., Jorio, A., Archanjo, B. S., Achete, C. A., and Cançado, L. G., Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon, 95 (2015), 646–52.Google Scholar
Beams, R., Cançado, L. G., and Novotny, L., Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27 (2015), 083002.Google Scholar
Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., and Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9 (2007), 1276.Google Scholar
Lucchese, M. M., Stavale, F., Ferriera, E. H., Vilane, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., and Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48 (2010), 1592.Google Scholar
Tuinstra, F. and Koenig, J. L., Raman spectrum of graphite. Journal of Chemical Physics, 53 (1970), 1126.Google Scholar
Ferrari, A. C. and Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64 (2001), 075414.Google Scholar
Cançado, L. G., Pimenta, M. A., Saito, R., Jorio, A., Ladeira, L. O., Grueneis, A., Souza-Filho, A. G., Dresselhaus, G., and Dresselhaus, M. S., Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite, Physical Review B, 66 (2002), 035415.Google Scholar
Cançado, L. G., Jorio, A., Martins Ferreira, E. H., Stavale, F., Achete, C. A., Capaz, R. B., Moutinho, M. V. O., Lombardo, A., Kulmala, T. S., and Ferrari, A. C., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters, 11 (2011), 3190.Google Scholar
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., and Casiraghi, C., Probing the nature of defects in graphene by Raman spectroscopy. Nano Letters, 12 (2012), 3925.Google Scholar
Grüneis, A., Saito, R., Samsonidze, Ge. G., Kimura, T., Pimenta, M. A., Jorio, A., Souza Filho, A. G., Dresselhaus, G., and Dresselhaus, M. S.. Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Physical Review B, 67 (2003), 165402.Google Scholar
Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S., and Jorio, A., Influence of the atomic structure on the Raman spectra of graphite edges. Physical Review Letters, 93 (2004), 247401.Google Scholar
Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M., and Ferrari, A. C., Raman spectroscopy of graphene edges. Nano Letters, 9 (2009), 1433.Google Scholar
Cançado, L. G., Jorio, A., and Pimenta, M. A., Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Physical Review B, 76 (2007), 064304.Google Scholar
Klar, P., Lidorikis, E., Eckmann, A., Verzhbitskiy, I. A., Ferrari, A. C., and Casiraghi, C.. Raman scattering efficiency of graphene, Physical Review B, 87 (2013), 205435.Google Scholar
Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhães-Paniago, R., and Pimenta, M. A., General equation for the determination of the crystallite size L[a] of nanographite by Raman spectroscopy. Applied Physics Letters, 88 (2006), 163106.Google Scholar
Martins Ferreira, E. H., Moutinho, M. V. O., Stavale, F., Lucchese, M. M., Capaz, R. B., Achete, C. A., and Jorio, A., Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Physical Review B, 82 (2010), 125429.Google Scholar
Giro, R., Archanjo, B. S., Martins Ferreira, E. H., Capaz, R. B., Jorio, A., and Achete, C. A.. Quantifying defects in N-layer graphene via a phenomenological model of Raman spectroscopy. Nuclear Instruments and Methods in Physics Research Section B, 319 (2014), 71–4.Google Scholar

6.5 References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, 306, 666.Google Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Science, 2008, 320, 1308.Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., Nature, 2005, 438, 197.Google Scholar
Zhang, Y.B., Tan, Y.W., Stormer, H.L., and Kim, P., Nature, 2005, 438, 201.Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Nano Letters, 2008, 8, 902.Google Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N., Applied Physics Letters, 2008, 92, 151911.Google Scholar
Ghosh, S., Nika, D.L., Pokatilov, E.P., and Balandin, A.A., New Journal of Physics, 2009, 11, 095012.Google Scholar
Balandin, A.A., Ghosh, S., Nika, D.L., and Pokatilov, E.P., ECS Transactions, 2010, 28, 63.Google Scholar
Balandin, A.A., Ghosh, S., Nika, D.L., and Pokatilov, E.P., Fullerenes, Nanotubes, and Carbon Nanostructures, 2010, 18, 1.Google Scholar
Balandin, A.A., Nature Materials, 2011, 10, 569–81.Google Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Physical Review Letters, 2006, 97, 187401.Google Scholar
Calizo, I., Bao, W., Miao, F., Lau, C.N., and Balandin, A.A., Applied Physics Letters, 2007, 91, 201904.Google Scholar
Calizo, I., Teweldebrhan, D., Bao, W., Miao, F., Lau, C.N., and Balandin, A.A., Journal of Physics C, 2008, 109, 012008.Google Scholar
Parvizi, F., Teweldebrhan, D., Ghosh, S., Calizo, I., Balandin, A.A., Zhu, H., and Abbaschian, R., Micro & Nano Letters, 2008, 3, 29.Google Scholar
Calizo, I., Miao, F., Bao, W., Lau, C.N., and Balandin, A.A., Applied Physics Letters, 2007, 91, 071913.Google Scholar
Calizo, I., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N., Nano Letters, 2007, 7, 2645.Google Scholar
Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., and Balandin, A.A., Nature Materials, 2010, 9, 555.Google Scholar
Yan, R., Simpson, J.R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., Kis, A., Luo, T., Hight Walker, A.R., and Xing, H.G., ACS Nano, 2014, 8, 986.Google Scholar
Peimyoo, N., Shang, J., Yang, W., Wang, Y., Cong, C., and Yu, T., Nano Research, 2014, 8, 1210.Google Scholar
Yan, Z., Jiang, C., Pope, T.R., Tsang, C.F., Stickney, J.L., Goli, P., Renteria, J., Salguero, T.T., and Balandin, A.A., Journal of Applied Physics, 2013, 114, 204301.Google Scholar
Malekpour, H., Chang, K.H., Chen, J.C., Lu, C.Y., Nika, D.L., Novoselov, K.S., and Balandin, A.A., Nano Letters, 2014, 14, 5155.Google Scholar
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, Li, and Ruoff, R.S., Nano Letters, 2010, 10, 1645.Google Scholar
Jauregui, L.A., Yue, Y., Sidorov, A.N., Hu, J., Yu, Q, Lopez, G., Jalilian, R., Benjamin, D. K., Delkd, D.A., Wu, W., Liu, Z., Wang, X., Jiang, Z., Ruan, X., Bao, J., Pei, S.S., and Chen, Y.P., ECS Transactions, 2010, 28, 73.Google Scholar
Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R.R., and Geim, A.K., ACS Nano, 2010, 4, 1889.Google Scholar
Mak, K.F., Shan, J., and Heinz, T.F., Physical Review Letters, 2011, 106, 046401.Google Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J., Kim, P., Choi, J., and Hong, B.H., Nature, 2009, 457, 706.Google Scholar
Kravets, V.G., Grigorenko, A.N., Nair, R.R., Blake, P., Anissimova, S., Novoselov, K.S., and Geim, A.K., Physical Review B, 2010, 81, 155413.Google Scholar
Yoon, K., Hwang, G., Chung, J., Kim, H.G., Kwon, O., Kihm, K.D., and Lee, J.S., Carbon, 2014, 76, 77.Google Scholar
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., and Shi, L., Science, 2010, 328, 213.Google Scholar
Jang, W., Chen, Z., Bao, W., Lau, C.N., and Dame, C., Nano Letters, 2010, 10, 3909.Google Scholar
Nika, D.L., Pokatilov, E.P., Askerov, A.S., and Balandin, A.A., Physical Review B, 2009, 79, 155413.Google Scholar
Nika, D.L., Ghosh, S., Pokatilov, E.P., and Balandin, A.A., Applied Physics Letters, 2009, 94, 203103.Google Scholar
Lindsay, L., Broido, D., and Mingo, N., Physical Review B, 2010, 82, 115427.Google Scholar
Lindsay, L., Broido, D., and Mingo, N., Physical Review B, 2010, 82, 161402.Google Scholar
Qiu, B. and Ruan, X., Applied Physics Letters, 2012, 100, 193101.Google Scholar
Zhang, H., Lee, G., and Cho, K., Physical Review B, 2011, 84, 115460.Google Scholar
Hu, J., Ruan, X., and Chen, Y.P., Nano Letters, 2009, 9, 2730.Google Scholar
Haskins, J., Kinaci, A., Sevic, C., Sevincli, H., Cuniberti, G., and Cagin, T., ACS Nano, 2011, 5, 3779.Google Scholar
Droth, M. and Burkard, G., Physical Review B, 2011, 84, 155404.Google Scholar
Qian, J., Allen, M.J., Yang, Y., Dutta, M., and Stroscio, M.A., Superlattices and Microstructures, 2009, 46, 881.Google Scholar
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., and Thomsen, C., Physical Review B, 2007, 76, 035439.Google Scholar
Wirtz, L. and Rubio, A., Solid State Communications, 2004, 131, 141.Google Scholar
Mounet, N. and Marzari, N., Physical Review B, 2005, 71, 205214.Google Scholar
Yan, J.-A., Ruan, W.Y., and Chou, M.Y., Physical Review B, 2008, 77, 125401.Google Scholar
Dubay, O. and Kresse, G., Physical Review B, 2003, 67, 035401.Google Scholar
Falkovsky, L.A., Physics Letters A, 2008, 372, 5189.Google Scholar
Lindsay, L. and Broido, D., Physical Review B, 2010, 81, 205441.Google Scholar
Lindsay, L., Broido, D.A., and Mingo, N., Physical Review B, 2011, 83, 235428.Google Scholar
Singh, D., Murthy, J.Y., and Fisher, T.S., Journal of Applied Physics, 2011, 110, 044317.Google Scholar
Evans, W.J., Hu, L., and Keblinsky, P., Applied Physics Letters, 2010, 96, 203112.Google Scholar
Savin, A.V., Kivshar, Y.S., and Hu, B., Physical Review B, 2010, 82, 195422.Google Scholar
Wei, N., Xu, L., Wang, H.-Q., and Zheng, J.-C., Nanotechnology, 2011, 22, 105705.Google Scholar
Nika, D.L., Askerov, A.S., and Balandin, A.A., Nano Letters, 2012, 12, 3238.Google Scholar
Nika, D.L. and Balandin, A.A., Journal of Physics: Condensed Matter, 2012, 24, 233203.Google Scholar
Mei, S., Maurer, L.N., Aksamija, Z., and Knezevic, I., Journal of Applied Physics, 2014, 116, 164307.Google Scholar
Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F., Nano Letters, 2014, 14, 6109.Google Scholar
Lepri, S., Livi, R., and Politi, A., Physics Reports, 2003, 377, 1.Google Scholar
Dhar, A., Physical Review Letters, 2001, 86, 5882.Google Scholar
Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., and Ruoff, R.S., Nature Materials, 2012, 11, 203.Google Scholar
Klemens, P.G., Journal of Wide Bandgap Materials, 2000, 7, 332.Google Scholar
Cocemasov, A.I., Nika, D.L., and Balandin, A.A., Physics Review B, 2013, 88, 035428.Google Scholar
Li, H., Ying, H., Chen, X., Nika, D.L., Cocemasov, A.I., Cai, W., Balandin, A.A., and Chen, S., Nanoscale, 2014, 6, 13402.Google Scholar
Nika, D.L., Cocemasov, A.I., and Balandin, A.A., Applied Physics Letters, 2014, 105, 031904.Google Scholar
Cocemasov, A.I., Nika, D.L., and Balandin, A.A., Nanoscale, 2015, 7, 12851.Google Scholar
Balandin, A.A., MRS Bulletin, 2014, 39, 817.Google Scholar
Balandin, A.A. and Wang, K.L., Physical Review B, 1998, 58, 1544.Google Scholar
Balandin, A.A., Journal of Nanoscience and Nanotechnology, 2005, 5, 1015.Google Scholar
Balandin, A.A., Advancing Microelectronics Magazine, 2011, 38, 6.Google Scholar
Shahil, K.M.F. and Balandin, A.A., Nano Letters, 2012, 12, 861.Google Scholar
Goyal, V. and Balandin, A.A., Applied Physics Letters, 2012, 100, 073113.Google Scholar
Shahil, K.M.F. and Balandin, A.A., Solid State Communications, 2012, 152, 1331.Google Scholar
Goli, P., Ning, H., Li, X., Lu, C.Y., Novoselov, K.S., and Balandin, A.A., Nano Letters, 2014, 14, 1497.Google Scholar
Renteria, J.D., Nika, D.L., and Balandin, A.A., Applied Sciences, 2014, 4, 525.Google Scholar
Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A.A., Journal of Power Sources, 2014, 248, 37.Google Scholar
Konatham, D., Bui, K.N.D., Papavassiliou, D.V., and Striolo, A., Molecular Physics, 2011, 109, 97.Google Scholar
Renteria, J., Legedza, S., Salgado, R., Balandin, M.P., Ramirez, S., Saadah, M., Kargar, F., and Balandin, A.A., Materials and Design, 2015, 88, 214.Google Scholar

7.6 References

Fallahi, A and Perruisseau-Carrier, J. “Design of Tunable Biperiodic Graphene Metasurfaces,” Physical Review B 86, 19 (November 2012), 195408.Google Scholar
Marini, A, Silveiro, I, and García de Abajo, FJ. “Molecular Sensing with Tunable Graphene Plasmons,” ACS Photonics 2, 7 (June 2015), pp. 876–82.Google Scholar
Abedinpour, SH et al.Drude Weight, Plasmon Dispersion, and AC Conductivity in Doped Graphene Sheets,” Physical Review B 84, 4 (2011), 045429.Google Scholar
Alonso-González, P et al. “Ultra-Confined Acoustic THz Graphene Plasmons Revealed by Photocurrent Nanoscopy,” Nature Nanotechnology arXiv:1601.05753 (2016).Google Scholar
Ashoori, RC, Stormer, HL, and Pfeifer, LN. “Edge Magnetoplasmons in the Time Domain,” Physical Review B 45, 7 (1992), pp. 58.Google Scholar
Barlas, Y et al.Chirality and Correlations in Graphene,” Physical Review Letters 98, 23 (2007), 236601.Google Scholar
Barnard, ES et al.Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence,” Nano Letters 11, 10 (2011), pp. 4265–9.Google Scholar
Bohm, D. and Pines, D.. “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Physical Review 92, 3 (November 1953), pp. 609–25.Google Scholar
Bostwick, A et al.Observation of Plasmarons in Quasi-Freestanding Doped Graphene,” Science (New York, NY) 328, 5981 (May 2010), pp. 9991002.Google Scholar
Brar, VW et al.Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Letters 13, 6 (2013), pp. 2541–7.Google Scholar
Caldwell, JD et al.Sub-Diffractional Volume-Confined Polaritons in the Natural Hyperbolic Material Hexagonal Boron Nitride,” Nature Communications 5 (2014), 5221.Google Scholar
Alzar, CG, Martinez, MA, and Nussenzveig, P. “Classical Analog of Electromagnetically Induced Transparency,” American Journal of Physics 70, 1 (January 2002), pp. 3741.Google Scholar
Chen, J et al.Optical Nano-Imaging of Gate-Tunable Graphene Plasmons,” Nature 487, 7405 (July 2012), pp. 7781.Google Scholar
Chen, J et al.Strong Plasmon Reaction at Nanometer-Size Gaps in Monolayer Graphene on SiC,” Nano Letters 13, 12 (2013), pp. 6210–15.Google Scholar
Christensen, J et al.Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6 (2012), pp. 431–40.Google Scholar
Cox, JD and García de Abajo, FJ. “Electrically Tunable Nonlinear Plasmonics in Graphene Nanoislands,” Nature Communications 5 (2014).Google Scholar
Cox, JD and García de Abajo, FJ. “Extraordinary Nonlinear Plasmonics in Graphene Nanoislands,” Nature Communications 5 (2014) 5725.Google Scholar
Cox, JD and García de Abajo, FJ. “Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene,” ACS Photonics 2, 2 (2015), pp. 306–12.Google Scholar
Crassee, I. “Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene,” Nano Letters 12 (2012), pp. 2470–4.Google Scholar
Rodrigo, D et al.Mid-Infrared Plasmonic Biosensing with Graphene,” Science 349, 6244 (July 2015), pp. 165–8.Google Scholar
Dai, S et al.Graphene on Hexagonal Boron Nitride as a Tunable Hyperbolic Metamaterial,” Nature Nanotechnology 10, 8 (2015), pp. 682–6.Google Scholar
Dai, S et al.Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride,” Science 343, 6175 (2014), pp. 1125–9.Google Scholar
Das, A et al.Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor,” Nature Nanotechnology 3, 4 (April 2008), pp. 210–15.Google Scholar
Farmer, DB et al.Ultrasensitive Plasmonic Detection of Molecules with Graphene,” ACS Photonics 3 (2016), pp. 553–7.Google Scholar
Dorfmuller, J et al.Fabry–Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Letters 9, 6 (2009), pp. 2372–7.Google Scholar
Dubois, LH. “Oxygen Chemisorption and Cuprous Oxide Formation on Cu(111): A High Resolution EELS Study,” Surface Science 119, 2–3 (July 1982), pp. 399410.Google Scholar
Carrasco, E et al.Gate-Controlled Mid-Infrared Light Bending with Aperiodic Graphene Nanoribbons Array,” Nanotechnology 26, 13 (March 2015), 134002.Google Scholar
Efetov, DK and Kim, P. “Controlling Electron–Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Physical Review Letters 105, 25 (December 2010), 256805.Google Scholar
Fang, Z et al.Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7, 3 (March 2013), pp. 2388–95.Google Scholar
Fang, Z et al.Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Letters 14, 1 (2013), pp. 299304.Google Scholar
Farmer, DB et al.Chemical Doping and Electron–Hole Conduction Asymmetry in Graphene Devices,” Nano Letters 9, 1 (2008), pp. 388–92.Google Scholar
Fei, Z. “Gate-Tuning of Graphene Plasmons Revealed by Infrared Nano-Imaging,” Nature 487 (2012), pp. 82–5.Google Scholar
Fei, Z et al.Electronic and Plasmonic Phenomena at Graphene Grain Boundaries,” Nature Nanotechnology 8, 11 (2013), pp. 821–5.Google Scholar
Fei, Z et al.Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO2 Interface,” Nano Letters 11, 11 (November 2011), pp. 4701–5.Google Scholar
Fei, Z et al.Edge Plasmons and Plane Plasmons in Graphene Nanoribbons,” Nano Letters 15 (2015), pp. 8271–6.Google Scholar
Fetter, AL. “Edge Magnetoplasmons in a Bounded Two-Dimensional Electron Fluid,” Physical Review B 32, 12 (1985), pp. 7676–84.Google Scholar
Fuchs, R and Kliewer, KL. “Optical Modes of Vibration in an Ionic Crystal Slab,” Physical Review 140,6A (1965), A2076.Google Scholar
Gan, X et al.Strong Enhancement of Light–Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity,” Nano Letters 12, 11 (2012), pp. 5626–31.Google Scholar
Garcia-Pomar, JL et al.Scattering of Graphene Plasmons by Defects in the Graphene Sheet,” ACS Nano 7, 6 (2013), pp. 4988–94.Google Scholar
Gell-Mann, M and Brueckner, KA. “Correlation Energy of an Electron Gas at High Density,” Physical Review 106, 2 (1957), p. 364.Google Scholar
Gierz, I et al.Atomic Hole Doping of Graphene,” Nano Letters 8, 12 (2008), pp. 4603–7.Google Scholar
Giuliani, G and Vignale, G. Quantum Theory of the Electron Liquid. Cambridge: Cambridge University Press, 2005.Google Scholar
Gu, T et al.Photonic and Plasmonic Guided Modes in Graphene–Silicon Photonic Crystals,” ACS Photonics 2, 11 (2015), pp. 1552–8.Google Scholar
Yan, H et al.Tunable Phonon-Induced Transparency in Bilayer Graphene Nanoribbons,” Nano Letters 14, 8 (July 2014), pp. 4581–6.Google Scholar
Hwang, EH and Das Sarma, S. “Dielectric Function, Screening, and Plasmons in Two-Dimensional Graphene,” Physical Review B 75, 20 (2007), p. 205418.Google Scholar
Hwang, EH, Sensarma, R, and Das Sarma, S. “Plasmon–Phonon Coupling in Graphene,” Physical Review B 82, 19 (November 2010), 195406.Google Scholar
Hwang, E and Das Sarma, S. “Quasiparticle Spectral Function in Doped Graphene: Electronelectron Interaction Effects in ARPES,” Physical Review B 77 (2008), pp. 25.Google Scholar
Jablan, M, Buljan, H, and Soljačić, M. “Plasmonics in Graphene at Infrared Frequencies,” Physical Review B 80, 24 (December 2009), 245435.Google Scholar
Jang, MS et al.Tunable Large Resonant Absorption in a Midinfrared Graphene Salisbury Screen,” Physical Review B 90, 16 (2014), 165409.Google Scholar
Ju, L et al.Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nature Nanotechnology 6, 10 (2011), pp. 630–4.Google Scholar
Kawabata, A and Kubo, R. “Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption,” Journal of the Physical Society of Japan 21, 9 (September 1966), pp. 1765–72.Google Scholar
Khrapach, I et al.Novel Highly Conductive and Transparent Graphene-Based Conductors,” Advanced Materials 24 (2012), pp. 2844–9Google Scholar
Kloeckner, K. et al.Electron–Phonon–Plasmon Interaction in MBE-Grown Indium Nitride: A High Resolution Electron Energy Loss Spectroscopy (HREELS) Study,” Physica Status Solidi (C) 7, 2 (February 2010), pp. 173–6.Google Scholar
Koch, RJ, Seyller, T, and Schaefer, JA. “Strong Phonon–Plasmon Coupled Modes in the Graphene/Silicon Carbide Heterosystem,” Physical Review B 82, 20 (2010), 201413.Google Scholar
Koppens, FHL, Chang, DE, and García de Abajo, FJ. “Graphene Plasmonics: A Platform for Strong Light Matter Interactions,” Nano Letters (2011).Google Scholar
Kotov, VN et al.Electron–Electron Interactions in Graphene: Current Status and Perspectives,” Reviews of Modern Physics 84 (2012), pp. 1067–125.Google Scholar
Kreibig, U and Vollmer, M. Optical Properties of Metal Clusters. Berlin: Springer Verlag (1995).Google Scholar
Kuttge, M, García de Abajo, FJ, and Polman, A. “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Letters 10, 5 (May 2010), pp. 1537–41.Google Scholar
Lafkioti, M et al.Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions,” Nano Letters 10, 4 (2010), pp. 1149–53.Google Scholar
Langer, T et al.Plasmon Damping Below the Landau Regime: The Role of Defects in Epitaxial Graphene,” New Journal of Physics 12, 3 (March 2010), 033017.Google Scholar
de Leon, NP et al.Tailoring Light–Matter Interaction with a Nanoscale Plasmon Resonator,” Physical Review Letters 108, 22 (May 2012), 226803.Google Scholar
Levitov, LS, Shtyk, AV, and Feigelman, MV. “Electron–Electron Interactions and Plasmon Dispersion in Graphene,” Physical Review B 8 (2013), 235403.Google Scholar
Liu, Yu et al.Plasmon Dispersion and Damping in Electrically Isolated Two-Dimensional Charge Sheets,” Physical Review B 78, 20 (November 2008), 201403.Google Scholar
Low, T et al.Novel Midinfrared Plasmonic Properties of Bilayer Graphene,” Physical Review Letters 112, 11 (July 2014), 116801.Google Scholar
Lukosz, W. “Principles and Sensitivities of Integrated Optical and Surface Plasmon Sensors for Direct A_Nity Sensing and Immunosensing,” Biosensors and Bioelectronics 6, 3 (December 1991), pp. 215–25.Google Scholar
Freitag, M et al.Photocurrent in Graphene Harnessed by Tunable Intrinsic Plasmons,” Nature Communications 4 (June 2013).Google Scholar
Manzoni, MT et al. “Second-Order Quantum Nonlinear Optical Processes in Graphene Nanostructures,” arXiv:1406.4360 (2014).Google Scholar
Mast, DB, Dahm, AJ, and Fetter, AL. “Observation of Bulk and Edge Magnetoplasmons in a Two-Dimensional Electron Liquid,” Physical Review Letters 54, 15 (1985), pp. 1706–9.Google Scholar
Mikhailov, SA. “Edge and Inter-Edge Magnetoplasmons in Two-Dimensional Electron Systems,” Edge Excitations of Low-Dimensional Charged Systems. Ed. by Kirichek, O. New York: Nova Science Publishers, Inc., 2000, pp. 147.Google Scholar
Mishchenko, EG et al.Guided Plasmons in Graphene pn Junctions,” Physical Review Letters 104, 15 (2010), p. 156806.Google Scholar
Nair, RR. “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320 (2008), 1308.Google Scholar
Ni, GX et al.Plasmons in Graphene Moire Superlattices,” Nature Materials 14 (2015), pp. 1217–22.Google Scholar
Yu Nikitin, A et al.Fields Radiated by a Nanoemitter in a Graphene Sheet,” Physical Review B 84, 19 (2011), 195446.Google Scholar
Nikitin, A et al.Anomalous Reaction Phase of Graphene Plasmons and Its Influence on Resonators,” Physical Review B 90, 4 (2014), 041407.Google Scholar
Nikitin, A et al.Edge and Waveguide Terahertz Surface Plasmon Modes in Graphene Microribbons,” Physical Review B 84, 16 (2011), 161407.Google Scholar
Palik, ED. Handbook of Optical Constants of Solids. Amsterdam: Elsevier,1997.Google Scholar
Petković, I et al.Carrier Drift Velocity and Edge Magnetoplasmons in Graphene,” Physical Review Letters 110, 1 (January 2013), 016801.Google Scholar
Pfnur, H et al.Multiple Plasmon Excitations in Adsorbed Two-Dimensional Systems," Journal of Physics Condensed Matter 23, 11 (2011), 112204.Google Scholar
Pines, D and Nozières, P. The Theory of Quantum Liquids. Boston, MA: Addison-Wesley, 1990.Google Scholar
Piper, JR and Fan, S. “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1, 4 (2014), pp. 347–53.Google Scholar
Polini, M et al. “Plasmons and the Spectral Function of Graphene,” Physical Review B 77 (2008), 81411.Google Scholar
Polini, M and Koppens, FHL. “Graphene: Plasmons in Moire Superlattices,” Nature Materials 14, 12 (2015), pp. 1187–8.Google Scholar
Polyakov, VM et al. “Investigation of the Space Charge Regime of Epitaxially Grown GaAs (100) by High-Resolution Electron Energy-Loss Spectroscopy,” Applied Surface Science (September 1996), pp. 24–34.Google Scholar
Principi, A, Polini, M, and Vignale, G. “Linear Response of Doped Graphene Sheets to Vector Potentials,” Physical Review B 80 (2009), 75418.Google Scholar
Principi, A et al.Impact of Disorder on Dirac Plasmon Losses,” Physical Review B 88, 12 (2013), 121405.Google Scholar
Principi, A et al.Intrinsic Lifetime of Dirac Plasmons in Graphene,” Physical Review B 88, 19 (2013), 195405.Google Scholar
Principi, A et al.Plasmon Losses Due to Electron–Phonon Scattering: The Case of Graphene Encapsulated in Hexagonal Boron Nitride,” Physical Review B 90, 16 (2014), 165408.Google Scholar
Stauber, T, Gomez-Santos, G, and de Abajo, FJ García. “Extraordinary Absorption of Decorated Undoped Graphene,” Physical Review Letters 112 (2014), 077401.Google Scholar
Thongrattanasiri, S et al.Complete Optical Absorption in Periodically Patterned Graphene,” Physical Review Letters 108, 4 (January 2012), 047401.Google Scholar
Tielrooij, KJ et al.Electrical Control of Optical Emitter Relaxation Pathways Enabled by Graphene,” Nature Physics 11, 3 (2015), pp. 281–7.Google Scholar
Tomadin, A et al.Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy,” Physical Review Letters 115, 8 (2015), 087401.Google Scholar
Volkov, VA and Mikhailov, SA. “Edge Magnetoplasmons: Low-Frequency Weakly Damped Excitations in Inhomogeneous Two-Dimensional Electron Systems,” Soviet Physics – Journal of Experimental and Theoretical Physics 67 (1988), pp. 1639–53.Google Scholar
Volkov, V A et al.Edge Magnetoplasmons under Conditions of the Quantum Hall Effect,” JETP Letters 44 (1986), pp. 655–9.Google Scholar
Brar, VW et al.Electronic Modulation of Infrared Radiation in Graphene Plasmonic Resonators,” Nature Communications 6 (May 2015).Google Scholar
Walter, AL. “Effective Screening and the Plasmaron Bands in Graphene,” Physical Review B 84 (2011), 85410.Google Scholar
Wang, W et al.Edge Plasmons in Graphene Nanostructures,” Physical Review B 84, 8 (2011), 085423.Google Scholar
Woessner, A et al.Highly Confined Low-Loss Plasmons in Graphene–Boron Nitride Heterostructures,” Nature Materials 14 (2014), pp. 421–5.Google Scholar
Wunsch, B et al.Dynamical Polarization of Graphene at Finite Doping,” New Journal of Physics 8, 12 (2006), p. 318.Google Scholar
Li, Y et al.Graphene Plasmon Enhanced Vibrational Sensing of Surface-Adsorbed Layers,” Nano Letters 14, 3 (February 2014), pp. 1573–7.Google Scholar
Yan, H. “Tunable Infrared Plasmonic Devices Using Graphene/Insulator Stacks,” Nature Nanotechnology 7 (2012), pp. 330–4.Google Scholar
Yan, H. et al.Infrared Spectroscopy of Tunable Dirac Terahertz Magneto-Plasmons in Graphene,” Nano Letters 12, 7 (July 2012), pp. 3766–71.Google Scholar
Yan, H et al.Damping Pathways of Mid-Infrared Plasmons in Graphene Nanostructures,” Nature Photonics 7, 5 (2013), pp. 394399.Google Scholar
Ye, J et al.Accessing the Transport Properties of Graphene and Its Multilayers at High Carrier Density,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011), pp. 13002–6.Google Scholar
Yeung, YM et al.Far-Infrared Graphene Plasmonic Crystals for Plasmonic Band Engineering,” Nano Letters 14, 5 (2014), pp. 2479–84.Google Scholar
Yu, N et al.Light Propagation with Phase Discontinuities: Generalized Laws of Reaction and Refraction,” Science 334, 6054 (October 2011), pp. 333–7.Google Scholar
Zhu, X et al.Experimental Observation of Plasmons in a Graphene Monolayer Resting on a Two Dimensional Subwavelength Silicon Grating,” Applied Physics Letters 102, 13 (2013), 131101.Google Scholar
Zhu, X et al.Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography,” Nano Letters 14, 5 (2014), pp. 2907–13.Google Scholar
Nikitin, AY et al.Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nature Photonics 10, 4 (2016), pp. 239–43.Google Scholar

8.5 References

Du, X., Skachko, I., Barker, A. et al., Nature Nanotechnol. 3, 491 (2000).Google Scholar
Bolotin, K. I., Sikes, K. J., Hone, J. et al., Phys. Rev. Lett. 101, 096802 (2008).Google Scholar
Castro, E. V., Ochoa, H., Katsnelson, M. I. et al., Phys. Rev. Lett. 105, 266601 (2010).Google Scholar
Huard, B., Sulpizio, J. A., Stander, N. et al., Phys. Rev. Lett. 98, 236803 (2007).Google Scholar
Williams, J. R., DiCarlo, L., and Marcus, C. M., Science 317, 638 (2007).Google Scholar
Özyilmaz, B., Jarillo-Herrero, P., Efetov, D. et al., Phys. Rev. Lett. 99, 166804 (2007).Google Scholar
Hwang, E. H., Adam, S., and Das Sarma, S., Phys. Rev. Lett. 98, 186806 (2007).Google Scholar
Martin, J., Akerman, N., Ulbricht, G. et al., Nature Phys. 4, 144 (2008).Google Scholar
Sivan, U., Heiblum, M., Umbach, C. P., and Shtrikman, H.. Phys. Rev. B 41 7937 (1990).Google Scholar
Spector, J., Weiner, J. S., Stormer, H. L. et al., Surf. Sci. 263, 240 (1992).Google Scholar
Mayorov, A. S., Gorbachev, R. V., Morozov, S. V. et al., Nano Lett. 11, 2396 (2011).Google Scholar
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press (1998).Google Scholar
Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Nature Phys. 2, 620 (2006).Google Scholar
Cheianov, V. V. and Fal’ko, V. I., Phys. Rev. B 74, 041403 (R) (2006).Google Scholar
Low, T., Hong, S., Appenzeller, J. et al., IEEE Trans. Elec. Dev. 56, 1292 (2009).Google Scholar
Fogler, M. M., Novikov, D. S., Glazman, L. I. et al., Phys. Rev. B 77, 075420 (2008).Google Scholar
Liu, G., Velasco, J. Jr., and Lau, C.N., Appl. Phys. Lett. 92, 203103 (2008).Google Scholar
Bolotin, K. I., Sikes, K. J., Jiang, Z. et al., Solid State Commun. 146, 351 (2008).Google Scholar
Du, X., Skachko, I., Barker, A. et al., Nature Comm. 3, 491 (2008).Google Scholar
Dean, C. R., Young, A. F., Meric, I. et al., Nature Nanotechnol. 5, 722 (2010).Google Scholar
Weitz, R. T., Allen, M. T., Feldman, B. E. et al., Science 330, 812 (2010).Google Scholar
Velasco, J. Jr., Lee, Y., Jing, L. et al., Solid State Commun. 152, 1301 (2012).Google Scholar
Amet, F., Williams, J. R., Watanabe, K. et al., Phys. Rev. Lett. 110, 216601 (2013).Google Scholar
Grushina, A., Ki, D. K., and Morpurgo, A. F., Appl. Phys Lett. 102, 223102 (2013).Google Scholar
Meric, I., Dean, C. R., Petrone, N. et al., Proc. of the IEEE 101, 7 (2013).Google Scholar
Young, A. F., Sanchez-Yamagishi, J. D., Hunt, B. et al., Nature 505, 528 (2014).Google Scholar
Young, A. F. and Kim, P., Nature Phys. 5, 222226 (2009).Google Scholar
Shytov, A. V., Rudner, M. S., and Levitov, L. S., Phys. Rev. Lett. 101, 156804 (2008).Google Scholar
Abanin, D. A. and Levitov, L. S., Science 317, 641 (2007).Google Scholar
Matsuo, S., Takeshita, S., Tanaka, T. et al., Nature Commun. 6, 8066 (2015).Google Scholar
Amet, F., Williams, J. R., Watanabe, K. et al., Phys. Rev. Lett. 112, 196601 (2014).Google Scholar
Sivan, U., Heiblum, M, Umbach, C. P. et al., Phys. Rev. B 41, 7937(R) (1990).Google Scholar
van Houten, H., Beenakker, C. W. J., Williamson, J. G. et al., Phys. Rev. B 39, 8556 (1989).Google Scholar
Park, C.-H., Son, Y.-W., Yang, L. et al., Nano Lett. 8, 2920 (2008).Google Scholar
Milton Pereira, J. Jr., Mlinar, V., Peeters, F. M. et al., Phys. Rev. B 74, 045424 (2006).Google Scholar
Zhang, F.-M., He, Y., and Chen, X., Appl. Phys. Lett. 94, 212105 (2009).Google Scholar
Hartmann, R. R., Robinson, N. J., and Portnoi, M. E., Phys. Rev. B 81, 245431 (2010).Google Scholar
Stone, D., Downing, C., and Portnoi, M. E., Phys. Rev. B 86, 075464 (2012).Google Scholar
Carmier, P., Lewenkopf, C., and Ullmo, D., Phys. Rev. B 81, 241406(R) (2010).Google Scholar
Chen, J.-C., Xie, X. C., and Sun, Q.-F., Phys. Rev. B 86, 035429 (2012).Google Scholar
Patel, A. A., Davies, N., Cheianov, V. et al., Phys. Rev. B 86, 081413(R) (2012).Google Scholar
Milovanović, S. P., Ramezani Masir, M., and Peeters, F. M., Appl. Phys. Lett. 103, 233502 (2013).Google Scholar
Cheianov1, V. V., Fal’ko, V., Altshuler, B. L., Science 315, 1252 (2007).Google Scholar
Cserti, J., Pályi, A., and Péterfalvi, C., Phys. Rev. Lett. 99, 246801 (2007).Google Scholar
Zhao, Y., Wyrick, J., Natterer, F. D. et al., Science 348, 672 (2015).Google Scholar
Beenakker, C. W. J., Sepkhanov, R. A., Akhmerov, A. R., and Tworzdlo, J., Phys. Rev. Lett. 102, 146804 (2009).Google Scholar
Williams, J. R., Low, T., Lundstrom, M. S. et al., Nature Nanotechnol. 6, 222 (2011).Google Scholar
Williams, J. R. and Marcus, C. M., Phys. Rev. Lett. 107, 046602 (2008).Google Scholar
Amet, F., Williams, J. R., Garcia, A. G. F. et al., Phys. Rev. B 85, 073405 (2012).Google Scholar
Veselago, V. G., Usp. Fiz. Nauk 92 517 (1967) [Sov. Phys. Usp. 10 509 (1968)].Google Scholar
Veselago, V. G., Physics – Uspekhi 45, 1097 (2002).Google Scholar
Lee, G.-H., Park, G.-H., Lee, H.-J., Nature Phys. 11, 925 (2015).Google Scholar
Rickhaus, P., Liu, M.-H., Makk, P. et al., Nano Lett. 15, 5819 (2015).Google Scholar
Taychatanapat, T., Watanabe, K., Taniguchi, T. et al., Nature Phys. 9, 225 (2013).Google Scholar
Beenakker, C. W. J., Rev. Mod. Phys. 80, 1337 (2008).Google Scholar
Taychatanapat, T., Tan, J. Y., Yeo, Y. et al., Nature Commun. 6, 6093 (2015).Google Scholar
Rickhaus, P., Makk, P., Liu, M.-H. et al., Nature Commun. 6, 6470 (2015).Google Scholar
Zhang, L. M. and Fogler, M. M., Phys. Rev. Lett. 100, 116804 (2008).Google Scholar
Molenkamp, L. W., Staring, A. A. M., Beenakker, C. W. J. et al., Phys. Rev. B 41, 1274(R) (1990).Google Scholar
Shepard, K. L., Roukes, M. L., and Van der Gaag, B. P., Phys. Rev. Lett. 68, 2660 (1992).Google Scholar
Choi, S. K., Park, C.-H., and Louie, S. G., Phys. Rev. Lett. 113, 026802 (2014).Google Scholar
Dragoman, D., J. Opt. Soc. Am. B 27, 1325 (2010).Google Scholar

9.7 References

Schwierz, F. Graphene Transistors. Nat Nanotechnol 5 487496, (2010).Google Scholar
Bolotin, K. I. et al. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 146, 351355 (2008).Google Scholar
Elias, D. C. et al. Dirac Cones Reshaped by Interaction Effects in Suspended Graphene. Nat Phys 7, 701704 (2011).Google Scholar
Castro, E. V. et al. Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons. Phys Rev Lett 105, 266601 (2010).Google Scholar
Liao, L. et al. High-κ Oxide Nanoribbons as Gate Dielectrics for High Mobility Top-Gated Graphene Transistors. Proc Natl Acad Sci USA 107, 67116715 (2010).Google Scholar
Meric, I. et al. Current Saturation in Zero-Bandgap, Topgated Graphene Field-Effect Transistors. Nat Nanotechnol 3, 654659 (2008).Google Scholar
Liao, L. and Duan, X. Graphene for Radio Frequency Electronics. Mater Today 15, 328338 (2012).Google Scholar
Lin, Y. M. et al. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 327, 662662 (2010).Google Scholar
Jeon, D.-Y. et al. Radio-Frequency Electrical Characteristics of Single Layer Graphene. Jpn J Appl Phys 48, 091601 (2009).Google Scholar
Lin, Y.-M. et al. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett 9, 422426 (2009).Google Scholar
Xia, F. et al. Ultrafast Graphene Photodetector. Nat Nanotechnol 4, 839843 (2009).Google Scholar
Liao, L. et al. Sub-100 nm Channel Length Graphene Transistors. Nano Lett 10, 39523956 (2010).Google Scholar
Liao, L. et al. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature 467, 305308 (2010).Google Scholar
Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 13121314 (2009).Google Scholar
Reina, A. et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 9, 3035 (2009).Google Scholar
Bae, S. et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat Nanotechnol 5, 574578 (2010).Google Scholar
Chen, J. H. et al. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat Nanotechnol 3, 206209 (2008).Google Scholar
Zhou, X. J. et al. Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors. Phys Rev Lett 95 (2005).Google Scholar
Obradovic, B. et al. Analysis of Graphene Nanoribbons as a Channel Material for Field-Effect Transistors. Appl Phys Lett 88 (2006).Google Scholar
Perebeinos, V. et al. Electron–Phonon Interaction and Transport in Semiconducting Carbon Nanotubes. Phys Rev Lett 94 (2005).Google Scholar
Shishir, R. and Ferry, D. Velocity Saturation in Intrinsic Graphene. J Phys: Condensed Matter 21, 344201 (2009).Google Scholar
Li, X. L. et al. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 319, 12291232 (2008).Google Scholar
Bai, J. W. et al. Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask. Nano Lett 9, 20832087 (2009).Google Scholar
Liao, L. et al. Top-Gated Graphene Nanoribbon Transistors with Ultrathin High-k Dielectrics. Nano Lett 10, 19171921 (2010).Google Scholar
Jiao, L. Y. et al. Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature 458, 877880 (2009).Google Scholar
Wei, D. C. et al. Controllable Unzipping for Intramolecular Junctions of Graphene Nanoribbons and Single-Walled Carbon Nanotubes. Nat Commun 4, 1374(2013).Google Scholar
Han, M. Y. et al. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys Rev Lett 98, 206805 (2007).Google Scholar
Yang, L., Park, C. H., Son, Y. W., Cohen, M. L., and Louie, S. G. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Phys Rev Lett 99, 186801 (2007).Google Scholar
Liao, L. et al. High-Performance Top-Gated Graphene-Nanoribbon Transistors Using Zirconium Oxide Nanowires as High-Dielectric-Constant Gate Dielectrics. Adv Mater 22, 1941 (2010).Google Scholar
Bai, J. W. et al. Graphene Nanomesh. Nat Nanotechnol 5, 190194 (2010).Google Scholar
Berrada, S. et al. Graphene Nanomesh Transistor with High On/Off Ratio and Good Saturation Behavior. Appl Phys Lett 103 (2013).Google Scholar
Seol, G. et al. Performance Projection of Graphene Nanomesh and Nanoroad Transistors. Nano Res 5, 164171 (2012).Google Scholar
Zeng, Z. Y. et al. Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Adv Mater 24, 41384142 (2012).Google Scholar
Castro, E. V. et al. Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Phys Rev Lett 99, 216802 (2007).Google Scholar
Zhang, Y. B. et al. Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature 459, 820823 (2009).Google Scholar
Yu, W. J. et al. Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping. Nano Lett 11, 47594763 (2011).Google Scholar
Yu, W. J., and Duan, X. F. Tunable Transport Gap in Narrow Bilayer Graphene Nanoribbons. Sci Rep-Uk 3 (2013).Google Scholar
Xia, F. N. et al. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett 10, 715718 (2010).Google Scholar
Shimizu, T. et al. Large Intrinsic Energy Bandgaps in Annealed Nanotube-Derived Graphene Nanoribbons. Nat Nanotechnol 6, 4550 (2011).Google Scholar
Mucciolo, E. R. et al. Conductance Quantization and Transport Gaps in Disordered Graphene Nanoribbons. Phys Rev B 79, 075407 (2009).Google Scholar
Areshkin, D. A. et al. Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects. Nano Lett 7, 204210 (2006).Google Scholar
Lewenkopf, C. H. et al. Numerical Studies of Conductivity and Fano Factor in Disordered Graphene. Phys Rev B 77, 081410 (2008).Google Scholar
Sols, F. et al. Coulomb Blockade in Graphene Nanoribbons. Phys Rev Lett 99, 166803 (2007).Google Scholar
Özyilmaz, B. et al. Electronic Transport in Locally Gated Graphene Nanoconstrictions. Appl Phys Lett 91, 192107 (2007).Google Scholar
Han, M. Y. et al. Electron Transport in Disordered Graphene Nanoribbons. Phys Rev Lett 104, 056801 (2010).Google Scholar
Britnell, L. et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 335, 947950 (2012).Google Scholar
Georgiou, T. et al. Vertical Field-Effect Transistor Based on Graphene-WS2 Heterostructures for Flexible and Transparent Electronics. Nat Nanotechnol 8, 100103 (2013).Google Scholar
Yu, W. J. et al. Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters. Nat Mater 12, 246252 (2013).Google Scholar
Liu, Y. et al. Highly Flexible Electronics from Scalable Vertical Thin Film Transistors. Nano Lett 14, 14131418 (2014).Google Scholar
Liu, Y. et al. High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. ACS Nano 9, 1110211108 (2015).Google Scholar
Yang, H. et al. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 336, 11401143 (2012).Google Scholar
Liao, L. and Duan, X. F. Graphene–Dielectric Integration for Graphene Transistors. Mat Sci Eng Rev 70, 354370 (2010).Google Scholar
Moon, J. S. et al. Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates. IEEE Electr Device Lett 30, 650652 (2009).Google Scholar
Cheng, R. et al. High-Frequency Self-Aligned Graphene Transistors with Transferred Gate Stacks. Proc Natl Acad Sci USA 109, 1158811592 (2012).Google Scholar
Lin, Y.-M. et al. Dual-Gate Graphene FETs with f(T) of 50 GHz. IEEE Electr Device L 31, 6870 (2010).Google Scholar
Wu, Y. Q. et al. State-of-the-Art Graphene High-Frequency Electronics. Nano Lett 12, 30623067 (2012).Google Scholar
Schwierz, F. Graphene Transistors: Status, Prospects, and Problems. Proc IEEE 101, 15671584 (2013).Google Scholar
Chauhan, J. and Guo, J. Assessment of High-Frequency Performance Limits of Graphene Field-Effect Transistors. Nano Res 4, 571579 (2011).Google Scholar
Wu, Y. Q. et al. High-Frequency, Scaled Graphene Transistors on Diamond-Like Carbon. Nature 472, 7478 (2011).Google Scholar
Lin, Y. M. et al. Enhanced Performance in Epitaxial Graphene FETs with Optimized Channel Morphology. IEEE Electr Device Lett 32, 13431345 (2011).Google Scholar
Chauhan, J. et al. A Computational Study of High-Frequency Behavior of Graphene Field-Effect Transistors. J Appl Phys 111, 094313(2012).Google Scholar
Koswatta, S. O. et al. Ultimate RF Performance Potential of Carbon Electronics. IEEE Trans Microw Theory 59, 27392750 (2011).Google Scholar
Zheng, J. X. et al. Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation. Sci Rep-Uk 3, 1314 (2013).Google Scholar
Wang, H. et al. Gigahertz Ambipolar Frequency Multiplier based on CVD Graphene. IEDM10–572 (2010).Google Scholar
Lin, Y. M. et al. Wafer-Scale Graphene Integrated Circuit. Science 332, 12941297 (2011).Google Scholar
Wang, H. Graphene Electronics for RF Applications. IEEE Microwave Mag 13, 114125 (2012).Google Scholar
Liao, L. et al. Scalable Fabrication of Self-Aligned Graphene Transistors and Circuits on Glass. Nano Lett 12, 26532657 (2012).Google Scholar
Han, S. J. et al. Graphene Radio Frequency Receiver Integrated Circuit. Nat Commun 5, 17649 (2014).Google Scholar
Ci, L. et al. Controlled Nanocutting of Graphene. Nano Res 1, 116122 (2008).Google Scholar
Cai, J. M. et al. Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature 466, 470473 (2010).Google Scholar
Chen, Y. C. et al. Molecular Bandgap Engineering of Bottom-up Synthesized Graphene Nanoribbon Heterojunctions. Nat Nanotechnol 10, 156160 (2015).Google Scholar
Barone, V., Hod, O., and Scuseria, G. E. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons. Nano Lett 6, 27482754 (2006).Google Scholar
Kosynkin, D. V. et al. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 458, 872875 (2009).Google Scholar
Cai, J. M. et al. Graphene Nanoribbon Heterojunctions. Nat Nanotechnol 9, 896900 (2014).Google Scholar
Jiao, L. et al. Facile Synthesis of High-Quality Graphene Nanoribbons. Nat Nanotechnol 5, 321325 (2010).Google Scholar
Wang, X. R. et al. Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors. Phys Rev Lett 100, 206803 (2008).Google Scholar
Lopata, K. et al. Graphene Nanomeshes: Onset of Conduction Band Gaps. Chem Phys Lett 498, 334337 (2010).Google Scholar
Liu, X. et al. Graphene Nanomesh Photodetector with Effective Charge Tunnelling from Quantum Dots. Nanoscale 7, 42424249 (2015).Google Scholar
Cheng, R. et al. Few-Layer Molybdenum Disulfide Transistors and Circuits for High-Speed Flexible Electronics. Nat Commun 5 (2014).Google Scholar
Li, L. K. et al. Black Phosphorus Field-Effect Transistors. Nat Nanotechnol 9, 372377 (2014).Google Scholar

10.9 References

Ando, Y.S., Zheng, H., and Suzuura, J., Phys. Soc. Jpn. 71, 1318 (2002).Google Scholar
Nair, R. et al., Science 320, 1308 (2008).Google Scholar
Gusynin, P., Sharapov, S.G., and Carbotte, J.P., Phys. Rev. Lett. 96, 256802 (2006).Google Scholar
Mak, K.F., San, J., and Heinz, T.F., Phys. Rev. Lett. 106, 046401 (2011).Google Scholar
Mak, K.F. et al., Solid State Commun. 52, 1341 (2010).Google Scholar
Zayats, A.V., Smolyaninov, I.I., and Maradudin, A.A., Phys. Rep. 408, 131 (2005).Google Scholar
Eberlein, T. et al., Phys. Rev. B 77, 233406 (2008).Google Scholar
Grigorenko, A.N., Polini, M., and Novoselov, K.S., Nat. Photon. 6, 749 (2012).Google Scholar
Low, T. and Avouris, Ph., ACS Nano 8, 1086 (2014).Google Scholar
Koppens, F.H.L., Chang, D.E., and de Abajo, F.J.G., Nano Lett. 11, 3370 (2011).Google Scholar
Chen, C.-F. et al., Nature 471, 617 (2011).Google Scholar
Li, Z.Q. et al., Nat. Phys. 4, 532 (2008).Google Scholar
Liu, M. et al., Nature 474, 64 (2011).Google Scholar
Majumdar, A., Kim, J., Vuckovic, J., and Wang, F., Nano Lett. 13, 515 (2013).Google Scholar
Gan, X. et al., IEEE J. Sel. Top. Quant. Electron. 20, 6000311 (2014).Google Scholar
Kumar, A., Low, T., Fung, K.H., Avouris, Ph., and Fang, N.X., Nano Lett. 15, 3172 (2015).Google Scholar
Koppens, F.H.L., Mueller, T., Avouris, Ph., Ferrari, A.C., Vitiello, M.S., and Polini, M., Nat. Nanotechnol. 9, 780 (2014).Google Scholar
Zuev, Y.M., Chang, W., and Kim, P., Phys. Rev. Lett. 102, 096807 (2009).Google Scholar
Song, J.C.W., Rudner, M.S., Marcus, C.M., and Levitov, L.S., Nano Lett. 11, 4688 (2011).Google Scholar
Gabor, N.M. et al., Science 334, 648 (2011).Google Scholar
Xu, X., Gabor, N.M., Alden, J.S., van der Zande, A.M., and McEuen, P.L., Nano Lett. 10, 562 (2010).Google Scholar
Dyakonov, M. and Shur, M., Phys. Rev. Lett. 71, 2565 (1993).Google Scholar
Dyakonov, M. and Shur, M., IEEE Trans. Electron Dev. 43, 380 (1996).Google Scholar
Lee, E.J.H., Balasubramanian, K., Weitz, R.T., Burghard, M., and Kern, K., Nat. Nanotechnol. 3, 486 (2008).Google Scholar
Xia, F. et al., Nano Lett. 9, 1039 (2009).Google Scholar
Park, J., Ahn, Y.H., and Ruiz-Vargas, C., Nano Lett. 9, 1742 (2009).Google Scholar
Echtermeyer, T.J. et al., Nano Lett. 14, 3733 (2014).Google Scholar
Tielrooij, K.J. et al., J. Phys.: Condens. Matter 27, 164207 (2015).Google Scholar
Mueller, T., Xia, F., and Avouris, Ph., Nat. Photon. 4, 297 (2010).Google Scholar
Furchi, M. et al., Nano Lett. 12, 2773 (2012).Google Scholar
Engel, M. et al., Nat. Commun. 3, 906 (2012).Google Scholar
Shiue, R.-J. et al., Appl. Phys. Lett. 103, 241109 (2013).Google Scholar
Echtermeyer, T.J. et al., Nat. Commun. 2, 458 (2011).Google Scholar
Freitag, M. et al., Nat. Commun. 4, 1951 (2013).Google Scholar
Pospischil, A. et al., Nat. Photon. 7, 892 (2013).Google Scholar
Gan, X. et al., Nat. Photon. 7, 883 (2013).Google Scholar
Shiue, R.-J. et al., Nano Lett., 15, 7288 (2015).Google Scholar
Konstantatos, G. et al., Nat. Nanotechnol. 7, 363 (2012).Google Scholar
Yan, J. et al., Nat. Nanotechnol. 7, 472 (2012).Google Scholar
Vicarelli, L. et al., Nat. Mater. 11, 865 (2012).Google Scholar
Spirito, D. et al., Appl. Phys. Lett. 104, 061111 (2014).Google Scholar
Cai, X. et al., Nat. Nanotechnol. 9, 814 (2014).Google Scholar
Liu, M., Yin, X., and Zhang, X., Nano Lett. 12, 1482 (2012).Google Scholar
Phare, C.T., Lee, Y.-H.D., Cardenas, J., and Lipson, M., Nat. Photon. 9, 511 (2015).Google Scholar
Sensale-Rodriguez, B. et al., Nat. Commun. 3, 780 (2012).Google Scholar
Johannsen, J.C. et al., Phys. Rev. Lett. 111, 027403 (2013).Google Scholar
Sun, Z. et al., ACS Nano 4, 803 (2010).Google Scholar
Purdie, D.G. et al., Appl. Phys. Lett. 106, 253101 (2015).Google Scholar
Lagatsky, A.A. et al., Appl. Phys. Lett. 102, 013113 (2013).Google Scholar
Zaugg, C.A. et al., Opt. Express 21, 31548 (2013).Google Scholar
Streyer, W. et al., Appl. Phys. Lett. 104, 131105 (2014).Google Scholar
Greffet, J.-J., Carminati, R., Joulain, K., Mulet, J.-P., Mainguy, S., and Chen, Y., Nature 416, 61 (2002).Google Scholar
Han, S.E. and Norris, D.J., Opt. Express 18, 4829 (2010).Google Scholar
Schuller, J.A., Taubner, T., and Brongersma, M.L., Nat. Photon. 3, 658 (2009).Google Scholar
Zayats, A.V., Smolyaninov, I.I., and Maradudinet, A.A., Phys. Reports 408, 131 (2005).Google Scholar
Mühlschlegel, P., Eisler, H.-J., Martin, O.J.F., Hecht, B., and Pohl, D.W., Science 308, 1607 (2005).Google Scholar
Freitag, M., Chiu, H.-Y., Steiner, M., Perebeinos, V., and Avouris, Ph., Nat. Nanotechnol. 5, 497 (2010).Google Scholar
Berciaud, S., Han, M.Y., Mak, K.F., Brus, L.E., Kim, P., and Heinz, T.F., Phys. Rev. Lett. 104, 227401 (2010).Google Scholar
Kim, Y.D. et al., Nat. Nanotechnol. 10, 676 (2015).Google Scholar
Brar, V.W. et