Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T21:01:37.632Z Has data issue: false hasContentIssue false

Mechanical Stress Measurements in Damascene-Fabricated Aluminum Interconnect Lines

Published online by Cambridge University Press:  10 February 2011

Paul R. Besser*
Affiliation:
Technology Development Group, Advanced Micro Devices, Inc., One AMD Place, Sunnyvale, CA 94088, paul.besser@amd.com
Get access

Abstract

The mechanical stress state of damascene-fabricated Al interconnect lines was determined on an array of lines on the product die of a logic technology device. Narrow, unpassivated, damascene Al lines have a purely hydrostatic stress (108 MPa). The hydrostatic stress of damascene Al lines (411 MPa) is much larger once the dielectric is deposited. However, the maximum shear stress remains small in magnitude, compared to RIE Al lines of similar thermal history and aspect ratio. The stress of damascene lines was measured as a function of linewidth. Unpassivated, wide lines, have compressive stresses along the length and width and zero along the line height. Passivated wide lines have a biaxial, tensile stress in-plane and zero along the line height.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Licata, T.,, Proceedings of the VLSI Multilevel Interconnect Conf., 596 (1995).Google Scholar
2. Venkatassen, S., IEEE Int. Electron Devices Meeting Digest, 768 (1997).Google Scholar
3. Edelstein, D.,, IEEE Int. Electron Devices Meeting Digest, 773 (1997).Google Scholar
4. Besser, P.R., Sanchez, J.E., and Field, D.P., MRS Conf. Proc. ULSI XII: Proc. of the 1996 Advanced Metallization and Interconnect Systems for ULSI Applications Conf., 89 (1997).Google Scholar
5. Besser, P.R., Sanchez, J.E., Field, D.P., Pramanick, S., and Sahota, K., MRS Symposium Proc. 473, 217222 (1997).Google Scholar
6. Cignac, L.M. et el., MRS Conf. Proc. ULSI XIII: Proc. of the 1997 Advanced Metallization and Interconnect Systems for ULSI Applications Conf., 79 (1998).Google Scholar
7. Clevenger, L.A., Proc. of the International Interconnect Conf., 137 (1998).Google Scholar
8. Furuya, A., MRS Conf. Proc. ULSI XIV: Proc. of the 1998 Advanced Metallization and Interconnect Systems for ULSI Applications Conf., 691 (1999).Google Scholar
9. Proost, J., Li, H., Witvrouw, A., and Maex, K., MRS Symposium Proc. 563, 91 (1999).Google Scholar
10. Schnabel, R.F., Stress Induced Phenomena in Metallization, AIP Conf. Proc. 491, 27 (1999).Google Scholar
11. Besser, P.R., Joo, Y-C, Winter, D., van Ngo, M., and Ortega, R., MRS Symposium Proc. 563, 189199 (1999).Google Scholar
12. Besser, P.R., Stress Induced Phenomena in Metallization, AIP Conf. Proc. 491, 229 (1999).Google Scholar
13. United States Patent # 5918149, Issued June 29, 1999.Google Scholar
14. Flinn, P.A., and Chiang, C., J. Appl. Phys. 67, 2927 (1990).Google Scholar
15. Tezaki, A.,, 1990 IEEE IRPS Conference Proc., 221 (1990).Google Scholar
16. Besser, P.R., Marieb, T.N., Lee, J., Flinn, P.A., and Bravman, J.C., J. Mater. Res. 11(1), 184 (1996).Google Scholar
17. Besser, P.R., Brennan, S., and Bravman, J.C., J. Mater. Res. 9(1), 13 (1994).Google Scholar
18. Kasthyuriarangan, J., Ph. D. Dissertation, University of Texas (1997).Google Scholar
19. Kuschke, W.-M., and Arzt, E., Appl. Phys. Lett. 64, 1097 (1994).Google Scholar
20. Hellwege, K- H., and Hellwege, A.M., editors, Landolt-Bornstein 111–2, Spring-Verlag, Berlin (1979).Google Scholar
21. Hosada, T., 1991 IEEE IRPS Proc., 77 (1991).Google Scholar