Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:09:27.954Z Has data issue: false hasContentIssue false

MBE Growth and Ultrahigh Temperature Processing of High-Quality AlN Films

Published online by Cambridge University Press:  15 March 2011

Z.Y. Fan
Affiliation:
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, U.S.A.
G. Rong
Affiliation:
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, U.S.A.
N. Newman
Affiliation:
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, U.S.A.
David J. Smith
Affiliation:
Department of Physics and Astronomy and Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1504, U.S.A.
D. Chandrasekhar
Affiliation:
Department of Physics and Astronomy and Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1504, U.S.A.
Get access

Abstract

Molecular beam epitaxial growth of AlN on sapphire and 6H-SiC has been performed utilizing mono-energetic activated nitrogen ion beams (2-80 eV kinetic energies). The growth temperature of AlN in MBE is found to be limited by the sticking coefficient of incident reactants. The combination of elevated growth temperatures (1050-1150°C), high kinetic-energy reactive nitrogen (>40 eV) and post-growth thermal processing (1150-1350°C) produces high-quality AlN thin-f ilms with narrow rocking curve widths (<2 arcmin) and low dislocation densities (<∼3×108cm−2). In contrast, the use of in-situ step anneals during synthesis did not achieve similar quality materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Movchan, B.A. and Demchishin, A.V., Phys. Met. Metallogr. 28, 83 (1969); H.T.G. Hentzell, C.R.M. Grovenor, and D.A. Smith, J. Vac. Sci. Tech. A2, 218 (1984).Google Scholar
2. Munir, Z. and Searcy, A.W., J. Chem. Phys. 42, 4223 (1965).Google Scholar
3. Newman, N., Ross, J., and Rubin, M., Appl. Phys. Lett. 62, 1242 (1993); N. Newman, J. Cryst. Growth 178, 102 (1997); N. Newman, Semiconductor and Semimetals, IIINitrides, Ed. J. Pankove and T. D. Moustakas, Academic Press, New York, p. 55 (1998).Google Scholar
4. Romano, L.T., Krusor, B.S., Singh, R., and Moustakas, T.D., J. Electron. Maters. 26, 285 (1997).Google Scholar
5. Smith, D.J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A., and Morkoç, H., Appl. Phys. Lett. 67, 1830 (1995).Google Scholar
6. Hamdani, F., Yeadon, M., Smith, D.J., Tang, H., Kim, W., Salvador, A., Botchkarev, A.E., Gibson, J.M., Polyakov, A.Y., Skowronski, M., and Morkoç, H., J. Appl. Phys. 83, 983 (1998).Google Scholar
7. Fan, Z.Y., Rong, G., Browning, J., and Newman, N., Mater. Sci. Eng. B56 (1999) in press.Google Scholar
8. Hildenbrand, D. L. and Hall, W. F., J. Phys. Chem. 59, 105 (1955).Google Scholar
9. Fu, T. C., Newman, N., Jones, E., Chan, J. S., Liu, X., Rubin, M. D., Cheung, N. W., and Weber, E. R., J. Electron. Mater. 24, 249 (1995).Google Scholar
10. Metzger, T., Stömmer, R., Schuster, M., Göbel, H., Höpler, R., Born, E., Metzger, T.H., Christiansen, S., Strunk, H.P., Ambacher, O., and Stutzmann, M., phys. stat. sol. (a) 162, 529 (1997).Google Scholar
11. Yang, B., Trampert, A., Jenichen, B., Brandt, O., and Ploog, K.H., Appl. Phys. Lett. 73, 3869 (1998).Google Scholar
12. Ponce, F.A., MRS Bulletin, February, 51 (1997).Google Scholar
13. Metzger, T., Stömmer, R., Schuster, M., Göbel, H., Höpler, R., Born, E., Metzger, T.H., Christiansen, S., Strunk, H.P., Ambacher, O., and Stutzmann, M., Phys. Stat. Sol. (a) 162, 529 (1997).Google Scholar
14. Rouviere, J.L., Arlery, M., Daudin, B., Feuillet, G., and Briot, O., Mater. Sci. Eng. B50, 61 (1997).Google Scholar