Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:28:21.224Z Has data issue: false hasContentIssue false

Radiocarbon Map of a Bomb-Peak Labeled Human Eye

Published online by Cambridge University Press:  25 July 2019

Laszlo Rinyu*
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research (ATOMKI), Hungarian Academy of Sciences, Bem ter 18/c, 4026 Debrecen, Hungary
Robert Janovics
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research (ATOMKI), Hungarian Academy of Sciences, Bem ter 18/c, 4026 Debrecen, Hungary
Mihaly Molnar
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research (ATOMKI), Hungarian Academy of Sciences, Bem ter 18/c, 4026 Debrecen, Hungary
Zoltan Kisvarday
Affiliation:
MTA-Debreceni Egyetem Neuroscience Research Group, Nagyerdei krt. 98, 4032 Debrecen, Hungary
Adam Kemeny-Beke
Affiliation:
Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
*
*Corresponding author. Email: rinyu.laszlo@atomki.mta.hu.

Abstract

The 14C/12C ratio of living organisms is largely determined by the 14C/12C ratio of consumed diet as well as by the atmospheric 14C concentration together with the body’s metabolic processes. The measured 14C content of living matter compared to the atmospheric radiocarbon level can provide invaluable information about developmental processes. Our aim was to determine the 14C content of ten different tissues of the human eye using the 14C bomb-pulse dating signature. The 14C content of the atmosphere, so called 14C “bomb-pulse” has labeled humanity offering an opportunity to determine these special formation, turnover and substitution courses in biology. The results allowed us to construct a 14C map of the bomb-peak labeled human eye. According to the anatomical location of the tissues, an unexpected picture emerged as in moving from the outer parts towards the inner parts of the eye, the 14C content of each tissue decreased. The data presented here are compatible with the view that the oldest parts of the eye are the sclera, the limbus and the cornea, in this order, and moving further inside, the youngest tissue of the eye is the retina.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cook, GT, Dunbar, E, Black, SM, Xu, S. 2006. A preliminary assessment of age at death determination using the nuclear weapons testing 14C activity of dentine and enamel. Radiocarbon 48(3):305313.CrossRefGoogle Scholar
Druffel, EM, Mok, HYI. 1983. Time history of human gallstones: application of the post–bomb radiocarbon signal. Radiocarbon 25(2):629636.CrossRefGoogle Scholar
Falso, MJS, Buchholz, BA. 2013. Bomb pulse biology. Nuclear Instruments and Methods in Physics Research B 294:666670.CrossRefGoogle Scholar
Georgiadou, E, Stenström, K. 2010. Bomb-pulse dating of human material: modeling the influence of diet. Radiocarbon 52(2–3):800807.CrossRefGoogle Scholar
Geyh, MA. 2001. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43(2b):723730.CrossRefGoogle Scholar
Harkness, DD, Walton, A. 1972. Further investigation of the transfer of bomb 14C to man. Nature 240:302303.CrossRefGoogle Scholar
Hogg, AG, Higham, T, Robertson, S, Beukens, R, Kankainen, T, McCormac, FG, van der Plicht, J, Stuiver, M. 1995. Radiocarbon age assessment of a new, near background IAEA 14C quality assurance material. Radiocarbon 37(2):797803.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Kjeldsen, H, Heinemeier, J, Heegaard, S, Jacobsen, C, Lynnerup, N. 2010. Dating the time of birth: a radiocarbon calibration curve for human eye-lens crystallines. Nuclear Instruments and Methods Physics Research B 268:13031306.CrossRefGoogle Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295297.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211216.CrossRefGoogle ScholarPubMed
Libby, WF, Berger, R, Mead, JF, Alexander, GV, Ross, JF. 1964. Replacement rates for human tissue from atmospheric radiocarbon. Science 146(3648):11701172.CrossRefGoogle ScholarPubMed
Lynnerup, N, Kjeldsen, H, Heegraad, S, Jacobsen, C. and Heinemeier, J. 2008. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS ONE 3(1):e1529.CrossRefGoogle ScholarPubMed
Major, I, Haszpra, L, Rinyu, L, Futó, I, Bihari, Á, Hammer, S, Jull, AJT, Molnar, M. 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a Center European Rural Tower Station between 2008 and 2014. Radiocarbon 60(5):12851299.CrossRefGoogle Scholar
Molnar, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.CrossRefGoogle Scholar
Molnar, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, HA. 2013b. EnvironMICADAS: a mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory on Environmental Studies(HEKAL), Hungary. Radiocarbon 55(2–3):338344.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Nydal, R, Lövseth, K, Syrstad, O. 1971. Bomb 14C in the human population. Nature 232:418421.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rinyu, L, Molnar, M, Major, I, Nagy, T, Veres, M, Kimak, A, Wacker, L, Synal, HA. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Rinyu, L, Orsovszki, G, Futo, I, Veres, M, Molnar, M. 2015. Application of zinc sealed tube graphitization on sub–milligram samples using EnvironMICADAS. Nuclear Instruments and Methods in Physics Research Section B 361:406413.CrossRefGoogle Scholar
Scott, EM. 2003. The Fourth International Radiocarbon Intercomparison (FIRI). Radiocarbon 45(2):135150.CrossRefGoogle Scholar
Spalding, KL, Buchholz, BA, Bergman, LE, Druid, H, Frisen, J. 2005. Forensics: age written in teeth by nuclear tests. Nature 437(7057):333337.CrossRefGoogle ScholarPubMed
Stenhouse, MJ, Baxter, MS. 1977. Bomb 14C a biological tracer. Nature 267:828832.CrossRefGoogle ScholarPubMed
Stenström, K, Skog, G, Nilsson, CM, Hellborg, R, Svegborn, SL, Georgiadou, E, Mattsson, S. 2010. Local variations in 14C—How is bomb-pulse dating of human tissues and cells affected? Nuclear Instruments and Methods in Physics Research B 268:12991302.CrossRefGoogle Scholar
Stenström, K, Skog, G, Georgiadou, E, Genberg, J, Johansson, A. 2011. A guide to radiocarbon units and calculations. Internal report, Lund University LUNFD6 (NFFR–3111):1–17.Google Scholar
Synal, HA, Döbeli, M, Jacob, S, Stocker, M, Suter, M. 2004. Radiocarbon AMS towards its lower-energy limits. Nuclear Instruments and Methods in Physics Research B 223–224:339345.CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, HA. 2010. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979.CrossRefGoogle Scholar
Wild, EM, Arlamovsky, KA, Golser, R, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P, Vycudilik, W. 2000. 14C dating with the bomb peak: an application to forensic medicine. Nuclear Instruments and Methods in Physics Research B 172:944950.CrossRefGoogle Scholar