Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:19:55.543Z Has data issue: false hasContentIssue false

Investigation of the Screen-printable Ag/Cu Contact for Si Solar Cells Using Microstructural, Optical and Electrical Analyses

Published online by Cambridge University Press:  22 November 2019

Keming Ren*
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.
Abasifreke Ebong
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.
*
*(Email: kren@uncc.edu)
Get access

Abstract

In a bid to further reduce the cost of the front Ag contact metallization in Si solar cells, Cu is the potential alternative to replace the Ag in the Ag paste. However, this requires an understanding of the contact mechanism of screen-printable Ag/Cu paste in Si solar cell through rapid thermal process. The pastes with different weight percent of Cu (0 wt%, 25 wt% and 50 wt%) were used and the Voc of the cells was reduced with the increasing weight percent of Cu. This is because the presence of Cu in the paste changed the microstructure of the Ag/Cu/Si contact through Cu doping of the glass frits and hence increasing the Tg of the glass. The increased Tg of the glass impeded the uniform spreading of the molten glass and resulted in poor wetting and etching of the SiNx, which impacted the contact as evident in ideality factor of less than unity. This also led to the formation of agglomerated Ag crystallites with features of 700 nm in length and 200 nm in depth, which is close to the p-n junction, of which depth is ∼300 nm. However, the interface glass layer acted as an effective diffusion barrier layer to prevent Cu atoms from diffusing into the Si emitter, which is quite remarkable for Cu not to diffuse into silicon at high temperature. Further investigation of the Ag/Cu contacts with the conductive AFM in conjunction with the SEM and STEM analyses revealed that the growth of Ag crystallites in the Si emitter is responsible for carrier conduction the gridlines as with the pure Ag paste.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, S. H., Lee, D. W. and Lee, S. H., Korean J. Met. Mater. 55 (9), 637-644 (2017).Google Scholar
Historical Copper Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/copper/ (accessed 20 September 2019).Google Scholar
Historical Silver Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/silver/ (accessed 20 September 2019).Google Scholar
Istratov, A. A. and Weber, E. R., J. Electrochem. Soc. 149 (1), G21-G30 (2002).CrossRefGoogle Scholar
Modanese, C., Wagner, M., Wolny, F., Oehlke, A., Laine, H., Inglese, A., Vahlman, H., Yli-Koski, M. and Savin, H., Sol. Energy Mater. Sol. Cells 186, 373-377 (2018).CrossRefGoogle Scholar
Adachi, S., Kato, T., Aoyagi, T., Naito, T., Yamamoto, H., Nojiri, T., Kurata, Y., Kurihara, Y. and Yoshida, M., IEEE J. Photovolt. 3 (4), 1178-1183 (2013).CrossRefGoogle Scholar
Vitanov, P., Tyutyundzhiev, N., Stefchev, P. and Karamfilov, B., Sol. Energy Mater. Sol. Cells 44 (4), 471-484 (1996).CrossRefGoogle Scholar
Lee, E.-J., Kim, D. and Lee, S., Sol. Energy Mater. Sol. Cells 74 (1-4), 65-70 (2002).CrossRefGoogle Scholar
Kang, J., You, J., Kang, C., Pak, J. J. and Kim, D., Sol. Energy Mater. Sol. Cells 74 (1-4), 91-96 (2002).CrossRefGoogle Scholar
You, J., Kang, J., Kim, D., Pak, J. J. and Kang, C. S., Sol. Energy Mater. Sol. Cells 79 (3), 339-345 (2003).CrossRefGoogle Scholar
Dapei, G., Papadimitropoulos, G., Varvitsiotis, D., Koustas, G., Vasilopoulou, M. and Davazoglou, D., Phys. Status Solidi (a) 212 (12), 2816-2821 (2015).CrossRefGoogle Scholar
Green, M. A., Prog Photovolt 19 (8), 911-916 (2011).CrossRefGoogle Scholar
Skwarek, A., Drabczyk, K. and Socha, R. P., Circuit World (2015).Google Scholar
Wood, D., Kuzma-Filipek, I., Russell, R., Duerinckx, F., Powell, N., Zambova, A., Chislea, B., Chevalier, P., Boulord, C. and Beucher, A., Energy Procedia 55, 724-732 (2014).CrossRefGoogle Scholar
Ren, K., Ye, T., Zhang, Y. and Ebong, A., MRS Adv. 4 (5-6), 311-318 (2019).CrossRefGoogle Scholar
Subramanian, P. and Perepezko, J., J Phase Equilibria Diffus 14 (1), 62-75 (1993).CrossRefGoogle Scholar
Neel, E. A., Ahmed, I., Pratten, J., Nazhat, S. and Knowles, J., Biomaterials 26 (15), 2247-2254 (2005).CrossRefGoogle Scholar
Duan, G., Xu, D. and Johnson, W. L., Metall Mater Trans A 36 (2), 455-458 (2005).CrossRefGoogle Scholar
Pi, X.-X., Cao, X.-H., Fu, Z.-X., Zhang, L., Han, P.-D., Wang, L.-X. and Zhang, Q.-T., Acta Metallurgica Sinica (English Letters) 28 (2), 223-229 (2015).CrossRefGoogle Scholar
Qin, J., Zhang, W., Bai, S. and Liu, Z., Sol. Energy Mater. Sol. Cells 144, 256-263 (2016).CrossRefGoogle Scholar
Zheng, G., Tai, Y., Wang, H. and Bai, J., J. Mater. Sci.: Mater. Electron. 25 (9), 3779-3786 (2014).Google Scholar
Ming, F., Si-Guo, C., Yue, W., Hong, Z. and Lin, F., J Inorg Mater. 31 (8), 785-790 (2016).CrossRefGoogle Scholar
Gonella, F., Caccavale, F., Bogomolova, L., d’Acapito, F. and Quaranta, A., J. Appl. Phys. 83 (3), 1200-1206 (1998).CrossRefGoogle Scholar
Shanmugam, V., Khanna, A., Basu, P. K., Aberle, A. G., Mueller, T. and Wong, J., Sol. Energy Mater. Sol. Cells 147, 171-176 (2016).CrossRefGoogle Scholar
Adachi, S., Nojiri, T., Kato, T., Watanabe, S. and Yoshida, M., J. Alloys Compd. 757, 333-339 (2018).CrossRefGoogle Scholar