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MODULES OVER DEDEKIND DOMAINS

Now that we have established the basic ring-theoretic properties of Dedekind
domains, we turn to the problem of classifying their finitely generated mod-
ules. We attack this problem in three steps. In the first step, we obtain a
structure theorem for the projective modules over an arbitrary Dedekind do-
main. Next, we specialize to the case that the Dedekind domain is a valuation
ring, that is, it has only one nonzero prime ideal. Given a general Dedekind
domain O and a prime p of 0 , there is a canonical valuation ring Op, the
localization of O at p, whose prime ideal corresponds to the chosen prime
ideal of O. Since a valuation ring is a Euclidean domain, we can apply the
results of section 3.3 to describe its modules. Finally, we piece together the
structure of a module over a general Dedekind domain from our knowledge of
the modules over its various localizations.

In passing, we obtain some results on modules over commutative principal
ideal domains that were promised in Chapter 3, but which cannot be conve-
niently derived from a discussion of noncommutative Euclidean domains.

Two methods of argument in this chapter foreshadow techniques that we
consider in greater depth in [BK: CM]. The construction of a localization in
section 6.2 is a special case of a more general construction that we consider in
section 6.1 of [BK: CM], and the arguments in section 6.3 are a first glimpse
of the 'local-global' methods which we discuss in section 7.3 of [BK: CM].

As is customary in this text, we deal with right modules unless the contrary
is stated. However, save for some examples, all rings mentioned in this chapter
are commutative, and so all modules can be regarded as balanced bimodules
(1.2.7). We take advantage of this observation to switch sides on occasion
when it seems more natural to work with left scalar multiplication rather
than right. This happens mostly when we deal with the ideals of a ring.

224

https://doi.org/10.1017/9780511608674.007 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608674.007


6.1 PROJECTIVE MODULES OVER DEDEKIND DOMAINS 225

6.1 PROJECTIVE MODULES OVER DEDEKIND DOMAINS

Our aim in this section is to classify the finitely generated projective modules
over a Dedekind domain O. We show that every ideal of O is projective and
that every projective 0-module is a direct sum of ideals. Furthermore, we
can write a projective module in the form P = Or~l © a for some ideal a of
O. The integer r and the ideal class {a} in Cl(O) are uniquely determined
by the module P (and vice versa), so we can see that there will be non-free
projective O-modules provided that the class group C\(O) of O is nontrivial.

We begin with a fact that was first made explicit with the introduction of
the techniques of homological algebra, [Cartan & Eilenberg 1956], VII, §§3,5.

6.1.1 Lemma
Let a be a fractional ideal of a Dedekind domain O. Then a is a finitely

generated projective O-module.
In particular, any integral ideal of O is a finitely generated projective O-

module.

Proof
By (5.1.8), da C O for some nonzero element* d of O. Evidently, da = a as

an O-module, so we may assume that a is integral.
By (5.1.23), a is generated by two elements, ai, a2, say. Choose any nonzero

element x in a and define, using invertibility, a fractional ideal b by xO = ab.
Then x = a\b\ + 0262, with 61,62 in b. There is a surjection TT : O2 —> a given
by

which is split by the map z »-> (zbi/x1zb2/x). The assertion now follows by
(2.5.8). •

This result leads to a first description of finitely generated projective mod-
ules.

6.1.2 Theorem
Let M be a module over a Dedekind domain O. Then the following state-

ments are equivalent.

(i) M = di © • • • © as for a finite set {ai , . . . , as} of integral ideals of O.
(ii) M is finitely generated and projective as an O-module.
(iii) There is an injective homomorphism a : M —• Ol for some integer t.
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226 MODULES OVER DEDEKIND DOMAINS

Proof
(i) => (ii): Immediate from the preceding lemma and (2.5.5).
(ii) => (iii): Since M is finitely generated, there is a surjection from some
finitely generated free module Ol to M; since M is projective, this homomor-
phism must be split (see (2.5.8)).
(iii) => (i): Argue by induction on t. If t = 1 (or 0), M is (isomorphic to)
an integral ideal of 0, and thus M is projective by the preceding result. For
t > 1, let e : Ol —•> (9 be given by projection to the £ th component. Then
caM is an ideal of O, so projective, and

M ^ ( M n Ker ea) 0 eaM

with <r(Af n Ker ea) C 0*-1. •
A more precise description of projective modules requires two preliminary

results on ideals.

6.1.3 Proposition
Let a and b be integral ideals in a Dedekind domain O. Then there is an

integral ideal a' in the ideal class of a such that af and b are coprime.

Proof
Take a nonzero element a of a and let c = (oO)a"1. Since O/bc is a principal

ideal ring (5.1.22), we have c = be + cO for some c in c. Hence ac = abc + ac
and so O = b + a(ca~l). •

6.1.4 Lemma
Let a and b be integral ideals of the Dedekind domain O. Then there is an

O-module isomorphism

Proof
First, suppose that a and b are coprime. Define a homomorphism a : a©b —>

O by a(a, b) = a — b. Then a is surjective, so split, and Ker a = a fl b = ab
by (5.1.5).

In general, the preceding result together with (5.1.14) shows that there is
an ideal o! = a with a' and b coprime; then a'b = ab. •

We also need an enhanced version of the process of 'clearing denominators'
introduced in (5.1.7).
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6.1.5 Lemma
Let O be a Dedekind domain with field of fractions K, and let m , . . . , Or be

integral ideals of O. Then

(i) any element of the vector space /Cr can be written in the form

aid"1

ard
 l

with d € O and a* € a* for each i,

(ii) K7 = (ai 0 • • • 0 ar)/C.

Proo/
Using (5.1.8), it is easily seen that for each i we can write Xi = Ci/di with

Ci in â  and d{ in 0 . Taking d = d\ • • • dr, we obtain (i), and (ii) is immediate.
D

We can now present the main result [Steinitz 1912].

6.1.6 Steinitz' Theorem
Let O be a Dedekind domain and let a i , . . . , ar and b i , . . . , bs be integral

ideals of O. Then the following assertions are equivalent:

(i) there is an O-module isomorphism

<f>: ai 0 • • • 0 ar —> bx 0 • • • 0 bs;

(ii) r = s and {ax • • • a r} = {bi • • • br} in C\(O).

Proof
(i) => (ii): Let /C be the field of fractions of O and let </>: ai 0 • • • 0 ar —>
bi © • • • 0 bs be the given isomorphism. By the preceding lemma, an element
x of the space Kr can be expressed in the form x = a/d with a G ai 0 • • • 0 ar

and d G O . Extend ^ to a map </>' from /Cr to Ks by 0'(x) = <t>(a)/d. It
is straightforward to verify that (f)' is a well-defined /C-linear map and an
isomorphism of /C-spaces. Thus r = 5, and both <$>' and 0 are represented by
left multiplication by a matrix Q — (qij) over K. (Recall that we work with
right modules and therefore regard the vector space Kr as a 'column-space';
see (2.2.9) for a discussion of the relation between endomorphisms of a free
module and matrices. In particular, note that the matrix Q is determined to
within conjugacy, so that its determinant detQ is uniquely defined.)

https://doi.org/10.1017/9780511608674.007 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608674.007


228 MODULES OVER DEDEKIND DOMAINS

Let

a= . € ai 0 - - - 0 a r .

Since Qa e bi 0 • • • ©b r , we have ]T\q^aj G b* for all i. In particular, taking
a/j = 0 for h ^ j , we find that ^ a j € bi for all z, j . So

det(Q) • ai • • • ar = det(Q • diag(ai,..., ar))

( qnai • • • <?irar

: '•. :

qrxa\ • • • qrrar

e b i - - b r .

Since ai • • • ar is generated by all products a\ • • • ar , we find that

det(Q)m • • • ar C b i - - -b r .

Similarly, det(Q~1)bi • • • br C ai • • • ar, which gives

{a i - - -a r } = {b i - - -b r } .

(ii) =4> (i): By Lemma (6.1.4) and induction,

d i e - - 0 0 , . ^O 1 * - 1 0a i - - -Or

and

However, {ai • • • ar} = {bi • • • br} implies that ai • • • ar = bi • • • br by (5.1.14).

•

6.1.7 The standard form

Steinitz' Theorem tells us that the isomorphism type of a finitely generated
projective (9-module M = ai 0 • • • 0 ar is characterized by two invariants,
namely, its rank, which is the integer r, and its ideal class {M} = {ai • • • ar}
in C1(O).

Note in particular that M is isomorphic to a projective module in standard
form Or~l 0 a with a an integral ideal, since by (5.1.14) every ideal class has
an integral representative.

The next consequence of Steinitz' Theorem should be contrasted with the
phenomenon of non-cancellation which we saw in (3.3.10).
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6.1 PROJECTIVE MODULES OVER DEDEKIND DOMAINS 229

6.1.8 Corollary

Cancellation holds for projective modules over a Dedekind domain: if

M®O=N0O

with M and N finitely generated projective, then

M^N. •
On the other hand, if we allow both components of the direct sum to vary,

we obtain the following observation.

6.1.9 Corollary
IfCl(O) is nontrivial, with {a} ^ 1, then

but

a^O and a"1 £ O. •

We also obtain a result which is more often proved without invoking the
theory of Dedekind domains.

6.1.10 Corollary
Let O be a commutative principal ideal domain. Then every finitely gener-

ated projective O-module is free. •

6.1.11 The noncommutative case

The definition of a Dedekind domain can be extended to allow the possibility
of noncommutative Dedekind rings, which include the noncommutative Eu-
clidean rings that we discussed in Chapter 4. Such rings share many of the
properties of commutative Dedekind domains; comprehensive details can be
found in Chapter 5 of [McConnell & Robson 1987].

Exercises

6.1.1 A converse to (6.1.1); see also Exercise 5.1.2.
Let Obea commutative domain with field of fractions /C, and let a

be a (nonzero) integral ideal of O. Suppose that there is an integral
ideal a' with aa' = xO for some nonzero element x in O. Show that
a is finitely generated and projective.
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230 MODULES OVER DEDEKIND DOMAINS

6.1.2 Let /C be a field. Show that the ideal (X, Y) in the polynomial ring
/C[X,y] is not projective

(a) by invoking Exercise 5.1.6,
(b) by showing directly that the surjection n : (/C[X,y])2 —> (X,y),

TT(/,^) = Xf — Yg, cannot be split.

More generally, show that the ideal (Xi,... ,Xk) of the polynomial
ring /C[Xi,..., Xn] is not projective for n > k > 2.

6.1.3 Tiled orders
Let O be a Dedekind domain with field of fractions /C. Given

a collection X — {a^ | z,j = l , . . . , r } of fractional ideals of (9,
the set of tiled matrices associated to X is the set T(X) of matrices
a = (a,ij) e Mr(K) such that a^ e â - for all z,j.

Show that T(X) is a subring of Mr(/C) if and only if an = (9 for
all i and a^a^ C aik for all i, j , fc.

Show also that, if T(X) is a ring, it is an (9-order. Such an order
is known as a tiled order.

Using Exercises 5.1.8 and 2.1.6, show that the endomorphism ring
End(Mo) of a projective (right) (9-module M = ai 0 • • • © ar is the
tiled order associated to the set

Write down this order when M is in standard form Or~l 0 a.
6.1.4 Suppose that M = ai 0 • • • 0 ar and N = bi 0 • • • 0 bs are projec-

tive (right) 0-modules. Generalize the previous exercise by showing
that Hom(M, N) can be described as the set of 5 x r tiled matrices
associated with the set of ideals

Verify that Hom(M, N) is an End(iV)-End(M)-bimodule by check-
ing the matrix multiplications.

6.2 VALUATION RINGS

In this section, we introduce the valuation associated to a nonzero prime
ideal p of a Dedekind domain O and the corresponding valuation ring Op.
Such a ring Op has a very transparent internal structure. It is a Euclidean
domain and hence a principal ideal domain; further, it has only one nonzero
prime ideal, and any nonzero ideal is a power of this prime. Thus the module
theory of Op is known since it is a special case of that given in section 3.3 for
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6.2 VALUATION RINGS 231

Euclidean domains. In the next section we show how to combine the results
for each separate prime p to complete the determination of the structure of
0-modules.

6.2.1 Valuations

Let O be a Dedekind domain with field of fractions /C and let p be a nonzero
prime ideal of O. By (5.1.19), any fractional ideal a of O has a factorization
a = pv(°V, where t;(a) = v(p, a) is an integer uniquely determined by a, and
a' is a product of prime ideals other than p. Of course, we may have a' = 0 ,
and, by definition, v(p, a') = 0. The integer v(a) is called the p-adic valuation
of a.

If p = pO is a principal ideal, we may speak instead of the p-adic valuation.
If x is a nonzero element of /C, we define the p-adic valuation of x to be

v(x) = v(xO). For convenience, we put v(0) = oo, with 0 being either the
ideal or the element.

Thus we have functions

v : Frac(O) U {0} > Z U {oo}

and

v : /C • ZU{oo};

the context should make it clear which is intended. It is helpful to extend the
usual ordering on Z to Z U {oo} by setting n < oo for any integer n.

The elementary properties of these functions are easy to check. For example,
to check surjectivity, note as in Exercise 5.1.4 that a proper invertible ideal p
can never have pk = pfc+1. We record the results for ideals and for elements
separately.

6.2.2 Lemma
Let a and b be fractional ideals of a Dedekind domain O) and let v be the

p-adic valuation for some prime p of O. Then

v : Frac(O) U {0} > Z U {oo}

is a surjective function with the following properties:

(i) v(a) = oo if and only if a — 0;
(ii) v(a + b) > min(t;(a),v(b)), with equality if v(a) ^ v(b);

(iii) v(ab) = v(a) + v(b);
(iv) v(p) = 1;
(v) v(O) = 0;
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232 MODULES OVER DEDEKIND DOMAINS

(vi) via'1) = -v(a). D

6.2.3 Lemma
Let x and y be nonzero elements of the field of fractions K of a Dedekind

domain O, with v as before. Then

v : /C > Z U {cx>}

and its restriction

v:O • {0}UNU{oo}

are surjective functions with the following properties:

(i) v(x) = o o i / and only if x — 0;
(ii) v(x -f y) > min(v(rr), v(y)), with equality if v(x) ^ v(y);

(iii) v(xy) = v(x) + v(y);
(iv) v(p) = 1 for any element p e p\p2, and such elements exist;
(v) v(l)=0;

(vi) vix-1) = -v(x). D

Observe that in each of the lemmas above, properties (v) and (vi) axe of
secondary importance, since they can be deduced from (iii).

The function v is more properly described as a discrete rank one valuation,
since there is a wider theory of valuations which may have values in ordered
groups other than Z, for example R (non-discrete) or Zn (rank n). Such
matters are discussed in [Cohn 1991]. However, we have no cause to consider
these more general valuations, so we dispense with the qualifying adjectives.

6.2.4 Localization

The valuation ring or localization of O at p is defined to be the subring Op

of /C consisting of all fractions which can be written in the form a/b with
a, b e O and 6 ^ p. It is not hard to verify that Op is a subring of /C, the
crucial point being that, if 61,62 € O and 61,62 ^ p, then 6162 ^ p since p is
a prime ideal.

To identify the localization in terms of the corresponding valuation, we need
a useful lemma.
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6.2 VALUATION RINGS 233

6.2.5 Lemma
Let p be a nonzero prime ideal of a Dedekind domain O and choose any

p e p\p2. Let ae O and put v = v(a). Then there exist

with

a',a"

aa'=pva".

Proof
By (6.2.3), v(ap~v) = 0, and so (5.1.19) shows that ap~vO = ab"1 for

integral ideals a, b, neither of which is divisible by p. Take any a! G b\p; then
aa'p~v = a" e a\p. D

We obtain an alternative characterization of the localization.

6.2.6 Theorem
Let p be a nonzero prime ideal of the Dedekind domain O. Then

Opi = {x e K | v(x) > 0}.

Proof
It is clear that Op is contained in the right-hand set. For the converse, take

x in /C with v(x) > 0, and write x = a/b with a and 6 in O. Put y = v(a) and
z = v(6), so that y > z.

Choose some element p in p\p2. By the lemma, aa' = pya" and bb' — pzb"
with a', a", 6', 6" £ <9\p. Then

x = aa'b'/bb'a' = fP~*a"Vf/b"a' e Op. •

Consider an element x of /C. Clearly, x belongs to O precisely when the ideal
xO is integral, which by (5.1.20) is the same as requiring that vp(x) > 0 for
all prime ideals p. This observation gives an important property of Dedekind
domains.

6.2.7 Theorem
Let O be a Dedekind domain. Then O = f]p Op, where the intersection is

taken over all the (nonzero) prime ideals of O. •

The following result is a straightforward application of the properties of
valuations that are listed in (6.2.2) and (6.2.3). It also relies on our discussion
of local rings in (4.3.24).
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6.2.8 Proposition

(i) Let x,y E Op be nonzero. Then x \y if and only ifv(x) < v(y).
(ii) Let x G K, / 0. Then either x or x~l is in Op.

(iii) The group of units in Op is U(OP) = {x e /C | v(x) = 0}.
(iv) Op is a local ring with maximal ideal

pOp = {x € K | v(x) > 1}.

(v) The ideal pOp is principal, generated by any element p € K with v(p) =
1.

(vi) The fractional Op-ideals in K, are the powers

Y = {xe)C\ v(x) >i}, ie Z.

(vii) Op is a principal ideal domain. •

6.2.9 Uniformizing parameters

An element p of Op with v(p) = 1 is sometimes called a uniformizing param-
eter^ or uniformizer or prime element, because of property (v) above. Note
that p can always be chosen to be an element of O itself. In view of (vii), the
ring Op may also be referred to as a principal valuation ring (nonprincipal
valuation rings appear in geometric contexts that we do not consider in this
text).

6.2.10 The localization as a Euclidean domain

We obtain the structure theory for modules over the valuation ring Op as a
special case of that for Euclidean domains. Recall from (3.2.7) that we need
to define a function

tp : Op > {0} U N

with the following properties:

(EDI) tp(a) = 0 ̂  a = 0, where a is in Op\
(ED2) <p(ab) > ip(a) for all nonzero a and b in Op\
(ED3) given a and b in Op, we have a = bq + r for some q and r in Op with

0 < tp(r)

The simplest choice is to put (p(0) — 0 and ip(a) = 1 4- v(a) otherwise. By
definition, (EDI) holds, and (ED2) is immediate from part (ii) of (6.2.3). The
division algorithm is rather trivially satisfied, since part (i) of (6.2.8) shows
that we can take r = a if b \ a.

https://doi.org/10.1017/9780511608674.007 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608674.007


6.2 VALUATION RINGS 235

Thus the Diagonal Reduction Theorem (3.3.2) holds for Op, from which we
obtain, as in section 3.3, the structure of Op-modules. For convenience, we
record this special case of (3.3.6) separately.

6.2.11 The Invariant Factor Theorem
Let M be a finitely generated (right) Op-module. Then

M ^ eydiOp e • • • e Op/dtOp e (op)5,

where d\,..., dt are nonunits in Op, d\ | c^ | • • • | di and s > 0. D

It is convenient to rephrase the Invariant Factor Theorem in terms of ideals.
To do this, put 6(i) = v(di) for i = 1, . . . , L

6.2.12 Corollary
Let M be a finitely generated (right) Op-module. Then

M *
where 6(1) < • • • < 6(£) are positive integers. •

6.2.13 Rank and invariant factors

As defined in (3.3.7), the elements d\,... ,c^ of Op are the invariant factors
of M, and the integer s is the rank of M. We can equally refer to the ideals
(p#p)6(1),..., (pOp)

6W as being the invariant factors of M.
In the next section, we show that the invariant factors are uniquely deter-

mined by the module M (6.3.12), that is, the elements di,...,di are deter-
mined up to multiplication by units of Op. The rank of M is also unique,
which we confirm in (6.3.6).

Exercises

6.2.1 Let O be a Dedekind domain and let Q be a subset of the set P of
nonzero prime ideals of O. Show that

is also a Dedekind domain and find its prime ideals.
Show that OQ is not a finitely generated O-module unless P = Q.

(Exercise 5.1.10 helps.)
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6.2.2 Let O = Op be a valuation ring with (unique) maximal ideal p, and
suppose that R is an 0-order.

Show that any finitely generated right i?-module is also finitely
generated as an (9-module.

Deduce that

(i) pi? C rad(.R), the Jacobson radical of -R as a ring,
(ii) R is a semilocal ring,

(iii) rad(i2) = 7r~1(rad(i?/pi?)), the inverse image with respect to the
natural homomorphism TT from R to R/pR,

(iv) (ra,d(R))h C pR for some integer h.

Hint Nakayama's Lemma (4.3.10), together with (4.3.12), may be
useful.

6.2.3 Let O be a valuation ring with maximal ideal p and suppose that
O has characteristic 0, so that Z can be regarded as a subring of O
(1.1.10). Show that pflZ = pZ, where the prime p is the characteristic
of the field O/p.

Let G be a finite group, and let OG be its group ring over O.

(i) Show that, if p does not divide the order \G\ of G, then

rad(OG) = pG.

(ii) Suppose that G = (7) is cyclic of order p. Show that

[Exercises 4.3.9 and 4.3.11 are relevant.]
(O ph\6.2 A Let O be a valuation ring with maximal ideal p, and let R = I \

be the tiled order consisting of those matrices in M2(O) with (1,2) th
entry belonging to ph where h is an integer, h > 0.

Show that

and that
h = l
M l

Let C{%) = ( *L ) for i = 0, . . . , h. Prove that each C(i) is a
» • ( $ )
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6.3 TORSION MODULES OVER DEDEKIND DOMAINS 237

right i?-module, and that C{i) = C(j) (as an ii-module) if and only
if i = j .
Hint. Any such isomorphism extends to an M2(/C)-homomorphism of

{ K, \
the irreducible right module I J, where /C is the field of fractions

\ /C J
of 0 , and so must be given by left multiplication by an element of /C.

In Exercise 7.2.5 of [BK: CM], we show that C(i) is projective as
an ii-module if and only if i = 0 or ft, and that any finitely generated
projective right i^-module is isomorphic to a direct sum of copies of
C(0) and C{h). Assuming this result, deduce that rad(i?) is projective
as a right R-module if and only if ft = 0,1.
Remark. For ft = 0,1, R is an example of a hereditary order, the
theory of which is discussed in detail in [Reiner 1975], Chapter 9; for
ft = 0, the order is maximal.

6.2.5 Repeat the previous exercise with
' O ph . . . ph ph x

O O . . . ph ph

R =
O O ... O ph

O O ... O O )

the O-order consisting of all n x n matrices with entries above the
diagonal belonging to ph.
{Warning. The same ideas work but are trickier to implement; the
generalization of the module C{i) requires multiple indices.)

6.3 TORSION MODULES OVER DEDEKIND DOMAINS

We now combine the results of the preceding two sections to obtain a com-
plete description of the finitely generated modules over an arbitrary Dedekind
domain O. We show that an 0-module can be decomposed into a direct sum
of a torsion-free component and a torsion component. The results of section
6.1 show that the torsion-free component is projective and so its structure is
known. The torsion component further decomposes into p-primary compo-
nents, one for each nonzero prime ideal p of O. Almost all of these primary
components are zero, and each is a torsion module over the corresponding
valuation ring (Dp, so that its structure is known by the results of the previous
section.

As a special case, we obtain a description of the structure of the finitely
generated modules over an arbitrary commutative principal ideal domain.
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The systematic use of the local rings Op to obtain results on (9-modules is
comparatively recent, originating with [Krull 1938].

6.3.1 Torsion modules

Let M be a right module over a commutative domain O. An element m in M
is said to be a torsion element if mr = 0 for some r ^ 0 in O. The set of all
torsion elements in M is denoted by T{M) and called the torsion submodule
of M. An easy verification reveals that T(M) is indeed a submodule of M.

We say that M is a torsion module if M — T(M) and, as in (1.2.23), that
M is torsion-free if T(M) = 0. (The zero module is therefore both a torsion
module and torsion-free; to avoid a proliferation of qualifying phrases, we
agree to ignore trivial modifications that result from inserting or deleting zero
modules.)

The following is routine.

6.3.2 Lemma
Let M be an O-module, where O is a commutative domain. Then T(M) is

a torsion module and M/T(M) is torsion-free. •

It is clear that the free module Ok is torsion-free, as are all its submodules.
The next result tells us that, in essence, any finitely generated torsion-free
module arises as a submodule of a free module.

6.3.3 Lemma
Let M be a finitely generated torsion-free O-module, where O is a commu-

tative domain. Then there is an injective O-module homomorphism from M
to Ok for some integer k.

Proof
By (1.2.23), the O-module M spans a vector space V over the field of frac-

tions /C of O. Since M is finitely generated, V is finite-dimensional. Choose a
set of generators {mi, . . . , me} of M and a basis {ei, . . . , e^} of V, and write

rrij = Y^ eiXij with Xij € /C.
i

The coefficients can be put over a common denominator d, and then

M^MdC exO 0 • • • 0 ekO. •

We combine the above result with (6.1.2).
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6.3.4 Corollary
Let M be a finitely generated torsion-free module over a Dedekind domain

O. Then M is protective. •

Since M/T(M) is torsion-free, the next result is immediate from the defi-
nition of a projective module (2.5.1).

6.3.5 Theorem
Let M be a finitely generated module over a Dedekind domain O. Then

there is an O-module isomorphism

M ^ T(M) 0 M/T(M). •

6.3.6 The rank

We can also extend the definition of the rank to any finitely generated module
M over a commutative domain O. If M is torsion-free, we put rank(M) =
dim(M/C), where M/C is the space spanned by M, and, in general, we set
rank(M) = rank(M/T(M)). It is clear that this definition coincides with our
previous definition when O is a Euclidean domain (3.3.7), (6.2.13). It is also
obvious that the rank of a module is uniquely defined, and that rank(M) = 0
precisely when M is a torsion module.

6.3.7 Primary modules

Recall that, given an O-module M, the annihilator of M is defined to be the
ideal Ann(M) of O given by

Ann(M) = {r e O \ mr = 0 for all m e M}.

It is clear that a finitely generated O-module has a nonzero annihilator if and
only if it is a torsion module.

Let p be a nonzero prime ideal of O. An O-module M is called p-primary
if Ann(M) = p6 for some natural number 6. (The zero module is admitted
as a p-primary module.) If p = pO is a principal ideal, we sometimes prefer
to say that a module is p-primary. This terminology is more natural if the
coefficient ring is a principal ideal domain, such as Z.

Clearly, the factor module O/p6 is p-primary, as is any finite direct sum of
such factor modules (with possibly differing exponents). Our aim is to show
that any finitely generated p-primary module can be described in this way, in
an essentially unique fashion.
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The argument exploits the Invariant Factor Theorem (6.2.11) for the local-
ization Op, the next result providing the connection. Note that any finitely
generated torsion Op-module is necessarily pOp-primary, since, by (6.2.8), pOp

is the unique nonzero prime ideal of the principal ideal domain Op.

6.3.8 Proposition
For any 6 > 0, O/p6 = Op/(pOp)

8 both as rings and as O-modules.

Proof
The natural ring homomorphism from O to Op/(pOp)

6 clearly has kernel
p6, so there is an induced injection i from O/p6 to Op/(pOp)

6.
To see that i is surjective, take an element a/b e Op, where a € O and

be O \ p, and consider the ideal bO 4- p6 of the Dedekind domain O. If this
ideal is proper, then, by (5.1.19), it has a unique factorization in terms of
prime ideals. Combining (5.1.17) and (5.1.21), we see that the only prime
ideal which could possibly occur as a factor of bO + p6 is p itself. Since b §£ p,
we have bO + p6 = O.

Thus 1 = be + z for some c in O and z in p6, so a/b = ac (mod (pOp)
6),

that is, (a/6) = i(ac), which establishes surjectivity.
Finally, observe that the (9-module structure on Op/(pOp)

6 arises from this
isomorphism - by 'change of rings' (1.2.14). •

We can now give a structure theorem for primary modules (but not yet a
uniqueness theorem).

6.3.9 Theorem
Let p be a nonzero prime ideal of the Dedekind domain O, and let M be a

finitely generated p-primary O-module.
Then M is also a finitely generated Op-module, and there is a direct decom-

position of My both as an O-module and as an Op-module,

where 6(1) < • • • < 6(£) are positive integers.

Proof
By definition, the annihilator of M is p6 for some 6 > 0. Thus M is nat-

urally an (0/p*)-module, hence an (Op/(pOp)
6)-modn\e, and therefore an

Op-module, from the previous result. By (6.2.12), M has a direct decompo-
sition as an Op-module as claimed, and this decomposition is clearly also an
O-module decomposition. •
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6.3.10 Elementary divisors

When the Dedekind domain O has more than one nonzero prime ideal, the
ideals p6^\... ,p6^ occurring in the decomposition of a p-primary module
M are called the elementary divisors of M.

If p = pO is principal, in particular, if O is a principal ideal domain,
the corresponding powers p^P*1),... ?p*(P>*(P)) of the irreducible element p are
often called the elementary divisors of M.

This definition anticipates the definition of elementary divisors for an arbi-
trary torsion module. The elementary divisors of a p-primary module M as
an (9-module are, by definition, the same as its invariant factors when M is
regarded as an Op-module. The extension of the notion of invariant factors
to modules over an arbitrary Dedekind domain is outlined in Exercise 6.3.6
below.

We associate with each direct sum decomposition of a p-primary module
into cyclic modules a sequence

edtp(M) = (ai ,a2 , . . . )

of natural numbers in which a* is the number of times that the term O/pl

occurs in the given direct sum. Once uniqueness of the decomposition has
been established, as in the next theorem, this sequence may be called the
p- elementary divisor type of M.

Note that a» = 0 for all but a finite set of indices; the maximum of the
indices for which a* ^ 0 is the length of edtp(M). Clearly, the length is the
exponent k occurring in the annihilator: Ann(M) = pk.

The zero module corresponds to the zero sequence (0,0,...), which has
length 0, and O/pk has type (0,.. . ,0,1,0,...) of length fc. This notion of
length is not the same as the length of a composition series introduced in
(4.1.8). Since the terms are used in different contexts, there should be no
confusion.

Our main result shows that the elementary divisor type edtp(M) describes
a p-primary module completely.

6.3.11 Theorem
Let M and N be finitely generated p-primary O-modules. Then M = N if

and only ifedtp{M) = edtp(iV).

Proof

It is obvious that if edtp(M) = edtp(iV) then M = N. Suppose conversely
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that M^N, and write

edtp(M) = (ai, a2 , . . . , afc, 0,...)

and

edtp(JV) = (ft, /32,.. . ,ft,0,.. .),

where fc and ^ are the lengths of the sequences. We argue by induction on k.
If k = 1, then M is in effect a vector space over the field O/p and ai is its

dimension; since Ann(iV) = p also, we must have I = 1 and ct\ = ft.
Now suppose k > 1. First, we note that the quotient modules M/pM and

N/pN are isomorphic and have types

edtp(M/pM) = (ai + a2 + ••• + <**, 0,...)

and

edtp(iV/piV) = (ft + & + • • • + ft, 0,...)

respectively, which shows that

ai 4- a2 + • • • + ak = ft + (32 + • • • 4- ft.

Next we note that, since p/p* = O/p*""1 for i > 1 by (5.1.24), the isomorphic
modules pM and piV have types

edtp(pM) = (a2,. . . ,af c ,0,. . .)

and

( /%, . . . , ft, 0 , . . . )

of lengths fc — 1 and ^ — 1; the result now follows by induction. •
For reference, we state an immediate consequence of the preceding result.

6.3.12 Corollary
Let p be a nonzero prime ideal of a Dedekind domain O, and let M be a

finitely generated torsion Op-module. Then the invariant factors

of M are unique. •
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6.3.13 Primary decomposition

We now consider the decomposition of a finitely generated torsion 0-module
M into a direct sum of p-primary submodules as p ranges over the set P =
P(O) of nonzero primes of the Dedekind domain O. This gives a characteri-
zation of M in terms of the collection (edtp(M) | p € P} of elementary divisor
types arising from its summands.

We first show that, for each p, M has a maximal p-primary submodule. To
see this, note that, if M' and M" are both p-primary submodules of M (that
is, both have annihilators that are powers of p), then so also is M1 + M".
Thus, if there were no maximal p-primary submodule, we could construct an
infinite ascending chain in M, contrary to the fact that M is Noetherian,
since it is a finitely generated module over the Noetherian ring O and so itself
Noetherian (3.1.4).

We can therefore define the p-component TP(M) of M to be the maximal
p-primary submodule of M, that is, the maximal submodule with the prop-
erty that Ann(Tp(M)) = pk for some natural number k. Alternative terms
for TP(M) are the p-torsion part and the p-primary part of M. Since M is
Noetherian, TP(M) is finitely generated.

The next result is the key to the existence of the primary decomposition.

6.3.14 Lemma
Let a and b be coprime ideals of O, and let M be an O-module such that

Ann(M) = ab.
Then M = oM 0 bM, and Ann(aM) = b and Ann(bM) = a.

Proof
Since a and b are coprime, O = a + b. Thus 1 = a + b for some elements

a, b of a, b respectively, and so M = aM + bM.
Suppose that m £ aM n bM. Then am = bm = 0 because abM = 0, hence

m = (a + b)m = 0, which gives the direct sum decomposition.
Clearly b C Ann(aM). Let x be in Ann(aM). Then xO • a C Ann(M) = ab

and hence xO C b, since a is an invertible ideal. •
Given the module M and a nonzero prime ideal p, we write the factorization

of the annihilator in the form

Ann(M) = pfcc(p),

where k > 0 is the p-adic valuation of Ann(M) and p and c(p) are coprime
(see (6.2.1)). Note that fc = 0 and c(p) = Ann(M) except for the finite set of
primes that actually occur as factors of Ann(M).
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6.3.15 Proposition
Let M be a finitely generated torsion module over a Dedekind domain O.

Then the following hold.

(i) TP{M) = c(p)M.
(ii) Tp(M) = 0 for all but finitely many primes p.

(iii) M = Q)pTp(M), where the sum is taken over the set P of all nonzero
primes pofO.

Proof
Clearly c(p)M C TP(M). By the lemma, we have M = pkM 0 c(p)M and

Ann(pfcM) = c(p). Thus if m = x + n is in TP(M), where x and n belong
to the respective summands of M, we find that x is annihilated by both the
coprime ideals pk and c(p), so must be 0. Thus (i) holds, and (ii) follows since
c(p) = Ann(M) for almost all primes.

The last part follows by induction on the number of distinct prime factors
of Ann(M). Note that, if p is a factor of Ann(M), then, by the preceding
lemma,

M = c(p)M 0 pkM = TP(M) © pkM.

Now Ann(pfcM) = c(p) has fewer prime factors than Ann(M), and Tq(p
kM) =

Tq(M) if q is a prime different from p. •
We note that all possible primary decompositions actually occur.

6.3.16 Proposition
Given any set of finitely generated p-primary O-modules MP) p G P, only

finitely many of which are nonzero, the external direct sum M = 0 Mp has
Tp(M)^Mpforallp. •

6.3.17 Elementary divisors again

Given an arbitrary finitely generated torsion (9-module M, the elementary
divisors of M are the ideals

that occur in the nontrivial p-primary components

TP(M) s o/p^'1) e...

of M, where p varies through the set P of nonzero prime ideals of O. So
that we can list the elementary divisors unambiguously, we must choose some
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convenient ordering of P; then, for a given p, we take the exponents in non-
decreasing order.

When O is a principal ideal domain, the powers

of the irreducible elements p are more often called the elementary divisors of
M. Now p will run through a representative set Pe of irreducible elements of
0, that is, each prime ideal p £ P is generated by exactly one member p of
Pe. We usually write TP(M) rather than TPQ(M) and call it the p-primary
submodule or p-component of M.

The elementary divisor type of M is defined as follows. For each nonzero
prime ideal p of 0, put

edtp(M) = edtp(Tp(M))

which is a sequence of finite length. Then the elementary divisor type of M
is defined to be

edt(M) = (edtp(M) | p <E P),

a sequence of such sequences, where the set P of primes is again given some
convenient ordering. For all except a finite set of primes, edtp(M) = (0,0,...).

It is clear that we can construct the elementary divisors of a module from
its elementary divisor type, and vice versa. Before we can show that its
elementary divisor type gives a complete description of a module, we need to
discuss how homomorphisms affect the primary components of modules.

6.3.18 Homomorphisms

Suppose that A : M —• N is a homomorphism between finitely generated
torsion (9-modules, where O is a Dedekind domain. It is clear from the
description of the p-components of M and N that A induces a family of O-
module homomorphisms

TP(A) : TP(M) > Tp(iV).

For all except a finite set of p, TP(A) is the zero map between zero modules.
Conversely, given a family {A(p) : TP(M) -» TP(N)} of 0-module homo-

morphisms, the direct sum A = ® p A(p) is a homomorphism from M to N
with Tp(A) = A(p) for all p.

Our discussion should have made the following result obvious.
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6.3.19 Proposition
Let M and N be finitely generated torsion O-modules, where O is a Dedekind

domain. Then M ^ N if and only ifTp(M) = TP(N) for all primes p ofO.

•
Combining the preceding proposition with the description of primary mod-

ules in (6.3.9), together with the fact that the elementary divisor type charac-
terizes primary modules (6.3.11), we obtain the classical description of torsion
modules over a Dedekind domain.

6.3.20 The Primary Decomposition Theorem
Let M and N be finitely generated torsion modules over the Dedekind do-

main O. Then
(i)

M ̂  0 p
where <5(p, 1) < • • • < 6(p1£(p)) are positive integers and £(p) — 0 for all
except a finite set of primes p,

(ii) M^N if and only ifedt(M) = edt(iV), that is, edtp(M) = edtp(iV) for
all (nonzero) primes pofO,

(iii) the set of prime ideals p of O with £(p) ^ 0 and the positive integers
8(p, 1) < • • • < £(P>^(p)) are uniquely determined by M, and vice versa
- informally, M is determined by its elementary divisors. •

6.3.21 Alternative decompositions

The Primary Decomposition Theorem shows that a finitely generated torsion
module M is a direct sum of cyclic modules. In general, there are many ways
in which a torsion module can be written as a direct sum of cyclic modules,
because, by the Chinese Remainder Theorem (5.1.5), there is an isomorphism
O/ab = O/a 0 O/b for any pair of coprime ideals a and b of O.

Thus, any uniqueness assertion for a direct decomposition of M into cyclic
summands requires the imposition of some extra condition. In the Primary
Decomposition Theorem, we in effect require that there are as many cyclic
summands as possible. At the opposite extreme, if we ask for as few cyclic
summands as possible, we are led to the Invariant Factor Theorem, which is
sketched in Exercise 6.3.6 below.

In the case that O has only one nonzero prime ideal, that is, O is already
local, the Invariant Factor Theorem is the same as the Primary Decomposition
Theorem.
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6.3.22 Homomorphisms again
We need some further remarks on homomorphisms as a preliminary to sum-
marizing our results on modules over a Dedekind domain O.

Let M and N be arbitrary finitely generated O-modules and suppose that
A : M —• N is a homomorphism between them. It is easy to see that A induces
a homomorphism

T(A) : T(M) > T(N)

between the torsion submodules of M and N, and hence a homomorphism

F{\) : M/T{M) > N/T(N)

between their torsion-free quotient modules.
By (6.3.4), M/T(M) and N/T(N) are projective, and so there are internal

direct decompositions

M = T(M) 0 M' and N = T(N) 0 iV'

with

M/T(M) a M' and W/r(JV) 2 M',

as noted in (6.3.5). It is easy to check that A is an isomorphism precisely
when both T(A) and .F(A) are isomorphisms.

Note that there is usually no canonical choice for the submodules M1 and
N1 - see Exercise 6.3.9. In the language of categories, the methods by which
T(M) and M/T(M) are constructed from M are both functorial, but the
construction of M' is not.

We summarize all our results in one compendium, which completely classi-
fies finitely generated modules for Dedekind domains.

6.3.23 Theorem
Let M be a finitely generated module over a Dedekind domain O. Then the

following assertions hold.

(i) M = P @T where P is a finitely generated projective O-module and
T = T(M) is a finitely generated torsion O-module.

(ii) P = Or"1 0 a where a is an ideal of O.
(iii) T = 0 T(p), where p runs through the nonzero prime ideals ofO, each

T(p) = TP(M) is a finitely generated p-primary O-module, and T(p) = 0
for almost all p.

(iv) IfT(p)^O,then

T{p) *
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where 0 < % , 1) < • • • < 6(pJ(p)) (and ifT(p) = 0, then l(p) = 0).

Furthermore, the module M determines, and in turn is determined to within
isomorphism by, the following information:

• the integer r = rank(M),
• the integers £(p) for all p,
• the integers 6(p,i) for all I <i < £(p) and all p,
• the class {a} of a in the ideal class group Cl(O).

(That is, a module N is isomorphic to M if and only if the set of integers and
the ideal class attached to N are the same as those for M.)

In particular, the torsion part of M is determined up to isomorphism by its
set of elementary divisors

{p^P.D ^(P^(P» | p G P} .

Proof
Assertion (i) follows by (6.3.4) and (6.3.5). For (ii), see (6.1.7), and (iii) is

in (6.3.15), noting that here T(p) = TP(T). Statement (iv) is given in (6.3.20).
The claim about isomorphism follows from (6.3.20) again, combined with

Steinitz' Theorem (6.1.6), using the discussion of homomorphisms above. •
Finally, it is useful to have a reinterpretation of the above result when O is

a (commutative) principal ideal domain. In this case, any projective module
is free, and it is more usual to describe torsion modules in terms of their
p-primary components (6.3.17), where p runs through a representative set
Pe of irreducible elements of O, that is, Pe has exactly one member p for
each nonzero prime ideal p of O. We also regard the elementary divisors of a
module as powers of irreducible elements rather than ideals.

The next result is an immediate translation of its predecessor into the
changed vocabulary.

6.3.24 Theorem
Let M be a finitely generated module over a commutative principal ideal

domain O. Then the following assertions hold,

(i) M = F 0 T where F = Or is a finitely generated free O-module and T
is a finitely generated torsion O-module.

(ii) T = 0 T(p), where p £ Pe, each T(p) is a finitely generated p-primary
O-module, and T(p) = 0 for almost all p.

(iii) IfT(p)^0,then

Tip) s o/ps^o e • • • e o/P
6(pAp))o,
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where 0 < <5(p, 1) < • • • < 6(p,£(p)) (and ifT(p) = 0, £(p) = 0).

Furthermore, the module M determines, and in turn is determined to within
isomorphism by, the following information:

• the integer r = rank(M),
• the integers £(p) for all p in Pe,
• the integers 6(p) i) for all i with 1 < i < £(p) and all p in Pe.

In particular, the torsion part of M is determined up to isomorphism by its
set of elementary divisors

{psip>l\...,p6{pAp))\pePe}. •

Exercises

In these exercises, the ring O is a Dedekind domain. For a pair of (right)

0-modules M and N we abbreviate Homo (M, N) to Hom(M, N).

6.3.1 Suppose that O has infinitely many distinct prime ideals, and put
M = 0 {O/p). Show that M is a torsion module, but Ann(M) = 0.

Let N = 0 . > o {O/f) lor any fixed p. Show that Ann(iV) = 0 but
that any finitely generated submodule of N is p-primary.

(This shows the significance of restricting our attention to finitely
generated modules, particularly in (6.3.7).)

6.3.2 We can extend the definition of p-primary to 0-modules which are
not finitely generated by saying that an 0-module M is p-primary
provided that all its finitely generated submodules are p-primary.

Using Zorn's Lemma, show that any (9-module has a maximal p-
primary submodule.

Verify that parts (ii) and (iii) of (6.3.15) continue to hold for non-
finitely-generated modules.

6.3.3 Find the composition series of O/p6. Hence find the composition
factors of an arbitrary p-primary module M, and find a formula for
the length of a composition series for M in terms of its elementary
divisor type.

Extend the result to arbitrary finitely generated torsion modules.
6.3.4 Let a be an integral ideal of O. Find the primary decomposition of

O/a.
Suppose that a i , . . . , Or are ideals of O with ai| • • • |ar, and let M =

O/CLI © • • • © O/ar (the external direct sum). Describe the primary
decomposition of M and its elementary divisor type.
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6.3.5 Uniqueness of invariant factors
Let O be a (commutative) Euclidean domain, in particular, a poly-

nomial ring IC[T]y and let M be a finitely generated (9-module. By
(3.3.6),

M £ O/eiO 0 • • • 0 O/eeO 0 Os,

where e\ \ e<i \ • • • | e£ are the invariant factors of M.
Identify T(M) and M/T(M), and, using Exercise 6.3.4 above, show

that the ideals ei<9,... ,e^O are unique. Deduce that the invariant
factors of M are unique up to multiplication by units.

6.3.6 Invariant Factor Theorem for Dedekind Domains
Let O be an arbitrary Dedekind domain, and let M be a finitely

generated torsion module over O. Using the primary decomposition
of M, show that there are ideals a i , . . . , ai of O with ai|•••|a* and
M = O/ai 0 • • • 0 O/ai.

Deduce that if if is a submodule of a free O-module On, then there
is a basis ( / i , . . . , fn) of On such that K = ai/i 0 • • • 0 aefe.

(For a direct proof, see [Curtis & Reiner 1966], 22.12.)
6.3.7 Let a and b be fractional ideals of O. Show that there is an exact

sequence

0 • Hom(a, b) > Hom(a, O) > Hom(a, O/b) > 0,

and deduce that

Hom(a,O/b) £ a^/a^b ^ O/b.

Hints. (6.1.1), (5.1.24) and Exercise 5.1.8.
6.3.8 Let M and N be (right) O-modules. Show that

(i) Hom(M, N) = 0 if Ann(M) and Ann(iV) are coprime,
(ii) Hom(M, N) = 0 if M is a torsion module and N is torsion-free.

6.3.9 Let M and iV be finitely generated (right) O-modules, and choose
internal direct sum decompositions M = T(M)®M' and N = T(N)®
N', so that M1 S M/T(M), etc.

Show that

/ Hom(T(M),T(iV)) Hom(M',T(AT))
; V 0 Hom(M',iV')

where the matrices act as left multipliers on the 'column' M - Exer-
cises 2.1.6 and 2.1.7 are relevant.

Confirm that End(M) is a triangular ring of matrices.
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Compute Hom(0/p ® O, O/q 0 O), where p, q are prime ideals of
O, possibly the same.

Remark. The term Hom(M', N') is known, by Exercise 6.1.4, and
Hom(M',T(iV)) is computable by Exercise 6.3.7 above. As noted in
(6.3.18), an element A in Hom(T(M),T(iV)) can be represented as a
sequence (Ap), where each Ap is in in Hom(Tp(M),Tp(iV)). The next
exercise gives Ap.

6.3.10 Let p be a nonzero prime ideal of O. Show that

Komo(O/pr,O/p>) = {x€ O/p> | prx = 0}

Let M = O/psW®- • -®O/psW and N = O/p<^®- ••®O/p<^ be
p-primary modules. Describe Hom(M, N) as a set of I x k matrices.
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