Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T02:30:29.259Z Has data issue: false hasContentIssue false

Fatigue Study of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass

Published online by Cambridge University Press:  01 February 2011

G. Y. Wang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
P. K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
A. Peker
Affiliation:
LiquidMetal Technologies, Inc., Lake Forest, CA 92630, USA.
B. Yang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
M. L. Benson
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
W. Yuan
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
W. H. Peter
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
L. Huang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
M. Freels
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
R. A. Buchanan
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
C. R. Brooks
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
Get access

Abstract

High-cycle fatigue (HCF) studies were performed on zirconium (Zr)-based bulk metallic glasses (BMGs): Zr41.2Ti13.8Ni10Cu12.5Be22.5, in atomic percent. The HCF experiments were conducted using an electrohydraulic machine at a frequency of 10 Hz with a R ratio of 0.1 and under tension-tension loading, where R = σmin./σmax., where σmin. and σmax. are the applied minimum and maximum stresses, respectively. The test environment was air. A high-speed and high-sensitivity thermographic-infrared (IR) imaging system has been used for nondestructive evaluation of temperature evolution during fatigue testing of BMGs. Limited temperature evolution was observed during fatigue. However, no sparking phenomenon was observed at the final moment of fracture of this BMG. At high stress levels (σmax. > 864 MPa), the fatigue lives of Batch 59 are longer than those of Batch 94 due to the presence of oxides in Batch 94. Moreover, the fatigue-endurance limit of Batch 59 (703 MPa) is somewhat greater than that of Bath 94 (615 MPa) in air. The fatigue-endurance limit of Ti-6–4 is greater than this BMG, but Al 7075 has the lowest fatigue life. The vein pattern with a melted appearance were observed in the apparent melting region. The fracture morphology indicates that fatigue cracks initiate from some defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klement, W., Willens, R. H., and Duwez, P.: Nature, 1960, vol. 187, pp. 869.Google Scholar
2. Nicholson, D. M. C., Stocks, G. M., Shelton, W. A., Wang, Y., and Swihart, J. C.: Metallurgical and Materials Transactions A, 1998, vol. 29A, pp. 1845.Google Scholar
3. Peter, W. H., Buchanan, R. A., Liu, C. T., Liaw, P. K., Morrison, M. L., Horton, J. A. Jr, Carmichael, C. A. Jr, and Wright, J. L.: Intermetallics, 2002, vol. 10, pp. 1157.Google Scholar
4. Flores, K. M., and Dauskardt, R. H.: Scripta Materialia, 1999, vol. 41, pp. 937 Google Scholar
5. Peker, A. and Johnson, W. L.: Applied Physics Letters, 1993, vol. 63, pp. 2342.Google Scholar
6. Inoue, A., Zhang, T., and Masumoto, T.: Materials Transactions, JIM, 1990, vol. 31(5), pp. 177.Google Scholar
7. Zhang, T., Inoue, A., and Masumoto, T.: Materials Transactions, JIM, 1991, vol. 32, pp. 1005.Google Scholar
8. Gilbert, C. J., Lippmann, J. M., and Ritchie, R. O.: Scripta Materialia, 1998, vol. 38, pp. 537.Google Scholar
9. Gilbert, C. J., Schroeder, V., and Ritchie, R. O.: Metallurgical and Materials Transactions A, 1999, vol. 30A, pp. 1739.Google Scholar
10. Kim, Y. J., Busch, R., Johnson, W. L., Rulison, A. J., and Rhim, W. K.: Applied Physics Letters, 1994, vol. 65, pp. 2136.Google Scholar
11. Busch, R., Kim, Y. J., and Johnson, W. L.: Journal of Applied Physics, 1995, vol. 77, pp. 4039.Google Scholar
12. Masuhr, A., Busch, R., and Johnson, W. L.: Journal of Non-Crystalline Solids Part 2, 1999, vol. 252, pp. 566.Google Scholar
13. Masuhr, A., Waniuk, T. A., Busch, R., and Johnson, W. L.: Physical Review Letters, 1999, vol. 82, pp. 2290.Google Scholar
14. Schennach, R., Grady, T., Naugle, D. G., McWhinney, H., Hays, C. C., Johnson, W. L., and Cocke, D. L.: Journal of Vacuum Science & Technology A - Vacuum Surfaces And Films Part 1, 2001, vol. 19(4), pp. 1447.Google Scholar
15. Bruck, H. A., Christman, T., Rosakis, A. J., and Johnson, W. L.: Scripta Metallurgica et Materialia, 1994, vol. 30, pp. 429.Google Scholar
16. Bruck, H. A., Rosakis, A. J., and Johnson, W. L.: Journal of Materials Research, 1996, vol. 11, pp. 503.Google Scholar
17. Flores, K. M., Suh, D., and Dauskardt, R. H.: Journal of Materials Research, 2002, vol. 17, pp. 1153.Google Scholar
18. Davis, L.: Metallic Glasses, Metals Park, OH: American Society for Metals, 1978, pp. 190.Google Scholar
19. Peter, W. H., Liaw, P. K., Buchanan, R. A., Liu, C. T., Brooks, C. R., Horton, J. A. Jr, Carmichael, C. A. Jr, and Wright, J. L.: Intermetallics, 2002, vol. 10, pp. 1125.Google Scholar
20. Peter, W. H., Buchanan, R. A., Liu, C. T., and Liaw, P. K., Journal of Non-Crystalline Solids, 2003, vol. 317, pp. 187.Google Scholar
21. Yang, B., Liaw, P. K., Wang, H., Jiang, L., Huang, J. Y., Kuo, R. C., and Huang, J. G.: Materials Science and Engineering, 2001, vol. A314, pp. 131.Google Scholar
22. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., and Klarstrom, D. L.: Metallurgical and Materials Transaction A, 2001, vol. 32(9), pp. 2279.Google Scholar
23. Wang, H., Jiang, L., Liaw, P. K., Brooks, C. R., and Klasstrom, D. L.: Mettallurgical and Materials Transaction A, 2000, vol. 31, pp. 1307.Google Scholar
24. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., and Klarstrom, D. L.: Transaction of Nonferrous Metals Society of China, 2002, vol. 12, pp. 734.Google Scholar
25. Wang, H., Jiang, L., He, Y., Chen, L., Liaw, P., Seeley, R., and Klarstrom, D.: Metallurgical Transactions A, 2002, vol. 33, pp. 1287.Google Scholar
26. Liaw, P. K., Yang, B., Tian, H., Jiang, L., Wang, H., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D., Strizak, J. P., and Mansur, L. K.: Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, Reuter, W. G. and Piascik, R. S., Eds., ASTM International, West Conshohocken, PA, 2002, pp. 524.Google Scholar
27. Liaw, P. K., Wang, H., Jiang, L., Yang, B., Huang, J. Y., Kuo, R. C., and Huang, J. G.: Scripta Materialia, 2000, vol. 42, pp. 389.Google Scholar
28. Yang, B., Liaw, P. K., Wang, G., Peter, W. H., Buchanan, R. A., Yokoyama, Y., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D. E., and Klarstrom, D. L.: Thermal-Imaging Technologies for Detecting Mechanical Damage during High-Cycle Fatigue, Metallurgical and Materials Transaction A, in press.Google Scholar
29. Yang, B.: Journal of Materials Engineering and Performance, 2003, vol. 12(3), pp. 345.Google Scholar
30. Chen, L. J., Liaw, P. K., Wang, H., He, Y. H., McDaniels, R. L., Jiang, L., Yang, B., and Klarstrom, D. L.: Mechanics of Materials, 2004, vol. 36, pp. 85.Google Scholar
31. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., Chen, L., and Klarstrom, D. L.: Metallurgical and Materials Transactions A., in press.Google Scholar
32. Jiang, L., Wang, H., Liaw, C. R., Brooks, C. R., and Klarstrom, D. L., Mechanics of Materials, 2004, vol. 36. pp. 73.Google Scholar
33. Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials. 3rd Ed., John Wiley & Sons, 1989.Google Scholar
34. ASME Handbook, Metals Engineering – Design, New York, McGraw-Hill, 1953.Google Scholar
35. Wang, G. Y., Liaw, P. K., Peter, W. H., Yang, B., Yokoyama, Y., Benson, M. L., Green, B. A., Kirkham, M. J., White, S. A., Saleh, T. A., McDaniels, R. L., Steward, R. V., Buchanan, R. A., Liu, C. T., and Brooks, C. R.: Fatigue Behavior of Bulk Metallic Glasses, Journal of Intermetallics, in press.Google Scholar
36. Nisitani, H. and Chen, D. H.: Transactions of the Japan Society of Mechanical Engineers, 1984, vol. 50, no. 453, pp. 1077.Google Scholar
37. Liu, C. T., Heatherly, L., Easton, D. S., Carmichael, C. A., Schneibel, J. H., Chen, C. H., Wright, J. L., Yoo, M. H., Horton, J. A., and Inoue, A.: Metallurgical and Materials Transactions A, 1998, vol. 29A, pp. 1811.Google Scholar
38. Donovan, P. E. and Stobbs, W. M.: Acta Metallurgica, 1981, vol. 29, pp. 1419.Google Scholar
39. Steif, P. S., Spaepen, F., and Hutchinson, J. W.: Acta Metallurgica, 1982, vol. 30, pp. 447.Google Scholar
40. Leng, Y. and Courtney, T. H.: Journal of Materials Science, 1991, vol. 26, pp. 588.Google Scholar