Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:57:29.383Z Has data issue: false hasContentIssue false

7 - Formation of Bose-Einstein Condensates

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

M. J. Davis
Affiliation:
School of Mathematics and Physics, University of Queensland
T. M. Wright
Affiliation:
School of Mathematics and Physics, University of Queensland, St. Lucia QLD 4072, Australia
T. Gasenzer
Affiliation:
Universität Heidelberg
S. A. Gardiner
Affiliation:
Department of Physics, Durham University
N. P. Proukakis
Affiliation:
School of Mathematics and Statistics, Newcastle University
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

The problem of understanding how a coherent, macroscopic Bose- Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of BEC in weakly interacting dilute atomic gases in 1995 was followed by a number of experimental studies examining the growth of the BEC number, as well as the development of its coherence. More recently, there has been interest in connecting such experiments to universal aspects of nonequilibrium phase transitions, in terms of both static and dynamical critical exponents. Here, the spontaneous formation of topological structures such as vortices and solitons in quenched cold-atom experiments has enabled the verification of the Kibble-Zurek mechanism predicting the density of topological defects in continuous phase transitions, first proposed in the context of the evolution of the early universe. This chapter reviews progress in the understanding of BEC formation and discusses open questions and future research directions in the dynamics of phase transitions in quantum gases.

Introduction

The equilibrium phase diagram of the dilute Bose gas exhibits a continuous phase transition between condensed and noncondensed phases. The order parameter characteristic of the condensed phase vanishes above some critical temperature Tc and grows continuously with decreasing temperature below this critical point. However, the dynamical process of condensate formation has proved to be a challenging phenomenon to address both theoretically and experimentally. This formation process is a crucial aspect of Bose systems and of direct relevance to all condensates discussed in this book, despite their evident system-specific properties. Important questions leading to intense discussions in the early literature include the time scale for condensate formation and the role of inhomogeneities and finite-size effects in “closed” systems. These issues are related to the concept of spontaneous symmetry breaking, its causes, and implications for physical systems (see, for example, Chapter 5 by Snoke and Daley).

In this chapter, we give an overview of the dynamics of condensate formation and describe the present understanding provided by increasingly well-controlled cold-atom experiments and corresponding theoretical advances over the past twenty years. We focus on the growth of BECs in cooled Bose gases, which, from a theoretical standpoint, requires a suitable nonequilibrium formalism.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Proukakis, N. P., Gardiner, S. A., Davis, M. J., and Szymańska, M. (eds). 2013. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. London, UK: Imperial College Press.
[2] Griffin, A., Nikuni, T., and Zaremba, E. 2009. Bose-Condensed Gases at Finite Temperatures. Cambridge, UK: Cambridge University Press.
[3] Popov, V. N. 1972. On the theory of the superfluidity of two- and one-dimensional Bose systems. Theor. Math. Phys., 11, 565.Google Scholar
[4] Popov, V. N. 1983. Functional Integrals in Quantum Field Theory and Statistical Physics. Dordrecht, Netherlands: Reidel.
[5] Gardiner, C. W. 1997. Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas. Phys. Rev. A, 56, 1414.Google Scholar
[6] Castin, Y., and Dum, R. 1998. Low-temperature Bose-Einstein condensates in timedependent traps: beyond th. U(1) symmetry-breaking approach. Phys. Rev. A, 57, 3008.Google Scholar
[7] Gardiner, S. A., and Morgan, S. A. 2007. Number-conserving approach to a minimal self-consistent treatment of condensate and noncondensate dynamics in a degenerate Bose gas. Phys. Rev. A, 75, 043621.Google Scholar
[8] Inoue, A., and Hanamura, E. 1976. Emission spectrum from the Bose-condensed excitonic molecules. J. Phys. Soc. Jpn., 41, 771.Google Scholar
[9] Levich, E., and Yakhot, V. 1977a. Time evolution of a Bose system passing through the critical point. Phys. Rev. B, 15, 243.Google Scholar
[10] Levich, E., and Yakhot, V. 1977b. Kinetics of phase transition in ideal and weakly interacting Bose gas. J. Low Temp. Phys., 27, 107.Google Scholar
[11] Levich, E., and Yakhot, V. 1978. Time development of coherent and superfluid properties in the course of. ƛ-transition. J. Phys. A, 11, 2237.Google Scholar
[12] Zeldovich, Ya. B., and Levich, E. V. 1968. Bose condensation and shock waves in photon spectra. [Zh. Eksp. Teor. Fiz. 55, 2423 (1968)] Sov. Phys. JETP, 28, 1287.Google Scholar
[13] Pitaevskii, L. P., and Stringari, S. 2003. Bose-Einstein Condensation. Oxford, UK: Clarendon Press.
[14] Tikhodeev, S. G. 1990. Bose condensation of finite-lifetime particles with excitons as an example. [Zh. Eksp. Teor. Fiz. 97, 681 (1990)] Sov. Phys. JETP, 70, 380.Google Scholar
[15] Eckern, U. 1984. Relaxation processes in a condensed Bose gas. J. Low Temp. Phys., 54, 333.Google Scholar
[16] Snoke, D. W., and Wolfe, J. P. 1989. Population dynamics of a Bose gas near saturation. Phys. Rev. B, 39, 4030.Google Scholar
[17] Stoof, H. T. C. 1991. Formation of the condensate in a dilute Bose gas. Phys. Rev. Lett., 66, 3148.Google Scholar
[18] Stoof, H. T. C. 1992. Nucleation of Bose-Einstein condensation. Phys. Rev. A, 45, 8398.Google Scholar
[19] Stoof, H. T. C. 1995. Bose-Einstein Condensation. Cambridge, UK: Cambridge University Press. Chap. Condensate formation in a Bose gas, page 226.
[20] Stoof, H. T. C. 1997. Initial stages of Bose-Einstein condensation. Phys. Rev. Lett., 78, 768.Google Scholar
[21] Stoof, H. T. C. 1999. Coherent versus incoherent dynamics during Bose-Einstein condensation in atomic gases. J. Low Temp. Phys., 114, 11.Google Scholar
[22] Svistunov, B. V. 1991. Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Mosc. Phys. Soc., 1, 373.Google Scholar
[23] Kagan, Yu., Svistunov, B. V., and Shlyapnikov, G. V. 1992. Kinetics of Bose condensation in an interacting Bose gas. Zh. Éksp. Teor. Fiz., 101, 528. [Sov. Phys. JETP 75, 387 (1992)].Google Scholar
[24] Kagan, Yu., and Svistunov, B. V. 1994. Kinetics of the onset of long-range order during Bose condensation in an interacting gas. Zh. Éksp. Teor. Fiz., 105, 353.Google Scholar
[Sov. Phys. JETP 78, 187 (1994)].
[25] Kagan, Yu.. 1995. Bose-Einstein Condensation. Cambridge, UK: Cambridge University Press. Chap. Kinetics of Bose-Einstein condensate formation in an interacting Bose gas, page 202.
[26] Sieberer, L. M., Huber, S. D., Altman, E., and Diehl, S. 2013. Dynamical critical phenomena in driven-dissipative systems. Phys. Rev. Lett., 110, 195301.Google Scholar
[27] Altman, E., Sieberer, L. M., Chen, L., Diehl, S., and Toner, J. 2015. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X, 5, 011017.Google Scholar
[28] Dagvadorj, G., Fellows, J. M., Matyjaskiewicz, S., Marchetti, F. M., Carusotto, I., and Szymanska, M. H. 2015. Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in a driven open quantum system. Phys. Rev. X, 5, 041028.Google Scholar
[29] Zakharov, V. E., L'vov, V. S., and Falkovich, G. 1992. Kolmogorov Spectra of Turbulence I: Wave Turbulence. Berlin, Germany: Springer-Verlag.
[30] Semikoz, D. V., and Tkachev, I. I. 1995. Kinetics of Bose condensation. Phys. Rev. Lett., 74, 3093.Google Scholar
[31] Semikoz, D. V., and Tkachev, I. I. 1997. Condensation of bosons in the kinetic regime. Phys. Rev. D, 55, 489.Google Scholar
[32] Berloff, N. G., and Svistunov, B. V. 2002. Scenario of strongly nonequilibrated Bose- Einstein condensation. Phys. Rev. A, 66, 013603.Google Scholar
[33] Nowak, B., Schole, J., and Gasenzer, T. 2014. Universal dynamics on the way to thermalisation. New J. Phys., 16, 093052.Google Scholar
[34] Schwarz, K. W. 1988. Three-dimensional vortex dynamics in superfluid 4He: homogeneous superfluid turbulence. Phys. Rev. B, 38, 2398.Google Scholar
[35] Kozik, E., and Svistunov, B. 2004. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett., 92, 035301.Google Scholar
[36] Kozik, E., and Svistunov, B. 2005. Scale-separation scheme for simulating superfluid turbulence: Kelvin-wave cascade. Phys. Rev. Lett., 94, 025301.Google Scholar
[37] Kozik, E., and Svistunov, B. 2005. Vortex-phonon interaction. Phys. Rev. B, 72, 172505.Google Scholar
[38] Kozik, E. V., and Svistunov, B. V. 2009. Theory of decay of superfluid turbulence in the low-temperature limit. J. Low Temp. Phys., 156, 215.Google Scholar
[39] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198.Google Scholar
[40] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.Google Scholar
[41] Ketterle, W., and van Druten, N. J. 1996. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys., 37, 181.Google Scholar
[42] Gardiner, C. W., and Zoller, P. 1997. Quantum kinetic theory: a quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential. Phys. Rev. A, 55, 2902.Google Scholar
[43] Gardiner, C. W., and Zoller, P. 1998. Quantum kinetic theory III: quantum kinetic master equation for strongly condensed trapped systems. Phys. Rev. A, 58, 536.Google Scholar
[44] Gardiner, C. W., and Zoller, P. 2000. Quantum kinetic theory V: quantum kinetic master equation for mutual interaction of condensate and noncondensate. Phys. Rev. A, 61, 033601.Google Scholar
[45] Gardiner, C. W., and Zoller, P. 2004. Quantum Noise. 3rd edn. Berlin and Heidelberg, Germany: Springer-Verlag.
[46] Miesner, H.-J., Stamper-Kurn, D. M., Andrews, M. R., Durfee, D. S., Inouye, S., and Ketterle, W. 1998. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science, 279, 1005.Google Scholar
[47] Gardiner, C. W., Zoller, P., Ballagh, R. J., and Davis, M. J. 1997. Kinetics of Bose- Einstein condensation in a trap. Phys. Rev. Lett., 79, 1793.Google Scholar
[48] Gardiner, C. W., Lee, M. D., Ballagh, R. J., Davis, M. J., and Zoller, P. 1998. Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett., 81, 5266.Google Scholar
[49] Lee, M. D., and Gardiner, C. W. 2000. Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate. Phys. Rev. A, 62, 033606.Google Scholar
[50] Davis, M. J., Gardiner, C. W., and Ballagh, R. J. 2000. Quantum kinetic theory. VII. The influence of vapor dynamics on condensate growth. Phys. Rev. A, 62, 063608.Google Scholar
[51] Bijlsma, M. J., Zaremba, E., and Stoof, H. T. C. 2000. Condensate growth in trapped Bose gases. Phys. Rev. A, 62, 063609.Google Scholar
[52] Zaremba, E., Nikuni, T., and Griffin, A. 1999. Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys., 116, 277.Google Scholar
[53] Zaremba, E., Griffin, A., and Nikuni, T. 1998. Two-fluid hydrodynamics for a trapped weakly interacting Bose gas. Phys. Rev. A, 57, 4695.Google Scholar
[54] Kirkpatrick, T. R., and Dorfman, J. R. 1983. Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A, 28, 2576.Google Scholar
[55] Kirkpatrick, T. R., and Dorfman, J. R. 1985. Transport coefficients in a dilute but condensed Bose gas. J. Low Temp. Phys., 58, 399.Google Scholar
[56] Kirkpatrick, T. R., and Dorfman, J. R. 1985. Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys., 58, 301.Google Scholar
[57] Kirkpatrick, T. R., and Dorfman, J. R. 1985c. Time correlation functions and transport coefficients in a dilute superfluid. J. Low Temp. Phys., 59, 1.Google Scholar
[58] Luiten, O. J., Reynolds, M. W., and Walraven, J. T. M. 1996. Kinetic theory of the evaporative cooling of a trapped gas. Phys. Rev. A, 53, 381.Google Scholar
[59] Köhl, M., Davis, M. J., Gardiner, C. W., Hänsch, T. W., and Esslinger, T. W. 2002. Growth of Bose-Einstein condensates from thermal vapor. Phys. Rev. Lett., 88, 080402.Google Scholar
[60] Davis, M. J., and Gardiner, C. W. 2002. Growth of a Bose-Einstein condensate: a detailed comparison of theory and experiment. J. Phys. B: At. Mol. Opt. Phys., 35, 733.Google Scholar
[61] Pinske, P. W. H., Mosk, A., Weidemüller, M., Reynolds, M. W., Hijmans, T. W., and Walraven, J. T. M. 1997. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett., 78, 990.Google Scholar
[62] Stamper-Kurn, D. M., Miesner, H.-J., Chikkatur, A. P., Inouye, S., Stenger, J., and Ketterle, W. 1998. Reversible formation of a Bose-Einstein condensate. Phys. Rev. Lett., 81, 2194.Google Scholar
[63] Stoof, H. T. C., and Bijlsma, M. J. 2001. Dynamics of fluctuating Bose-Einstein condensates. J. Low. Temp. Phys., 124, 431.Google Scholar
[64] Proukakis, N. P., Schmiedmayer, J., and Stoof, H. T. C. 2006. Quasicondensate growth on an atom chip. Phys. Rev. A, 73, 053603.Google Scholar
[65] Garrett, M. C., Ratnapala, A., van Ooijen, E. D., Vale, C. J., Weegink, K., Schnelle, S. K., Vainio, O., Heckenberg, N. R., Rubinsztein-Dunlop, H., and Davis, M. J. 2011. Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling. Phys. Rev. A, 83, 013630.Google Scholar
[66] Harber, D. M., McGuirk, J. M., Obrecht, J. M., and Cornell, E. A. 2003. Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys., 133, 229.Google Scholar
[67] Marchant, A. L., Händel, S., Wiles, T. P., Hopkins, S. A., and Cornish, S. L. 2011. Guided transport of ultracold gases of rubidium up to a room-temperature dielectric surface. New J. Phys., 13, 125003.Google Scholar
[68] Märkle, J., Allen, A. J., Federsel, P., Jetter, B., Günther, A., Fortágh, J., Proukakis, N. P., and Judd, T. E. 2014. Evaporative cooling of cold atoms at surfaces. Phys. Rev. A, 90, 023614.Google Scholar
[69] Imamovic-Tomasovic, M., and Griffin, A. 2001. Quasiparticle kinetic equation in a trapped Bose gas at low temperatures. J. Low Temp. Phys., 122, 616.Google Scholar
[70] Kadanoff, L. P., and Baym, G. 1962. Quantum Statistical Mechanics. Menlo Park, CA: W. A. Benjamin.
[71] Walser, R., Williams, J., Cooper, J., and Holland, M. 1999. Quantum kinetic theory for a condensed bosonic gas. Phys. Rev. A, 59, 3878.Google Scholar
[72] Walser, R., Cooper, J., and Holland, M. 2001. Reversible and irreversible evolution of a condensed bosonic gas. Phys. Rev. A, 63, 013607.Google Scholar
[73] Wachter, J., Walser, R., Cooper, J., and Holland, M. 2001. Equivalence of kinetic theories of Bose-Einstein condensation. Phys. Rev. A, 64, 053612.Google Scholar
[74] Proukakis, N. P. 2001. Self-consistent quantum kinetics of condensate and noncondensate via a coupled equation of motion formalism. J. Phys. B: At. Mol. Opt. Phys., 34, 4737.Google Scholar
[75] Proukakis, N. P., and Burnett, K. 1996. J. Res. Natl. Inst. Stand. Technol., 101, 457.
[76] Proukakis, N. P., Burnett, K., and Stoof, H. T. C. 1998. Microscopic treatment of binary interactions in the nonequilibrium dynamics of partially Bose-condensed trapped gases. Phys. Rev. A, 57, 1230.Google Scholar
[77] Shi, H., and Griffin, A. 1998. Finite-temperature excitations in a dilute Bosecondensed gas. Phys. Rep., 304, 187.Google Scholar
[78] Barci, D. G., Fraga, E. S., and Ramos, R. O. 2000. A nonequilibrium quantum field theory description of the Bose-Einstein condensate. Phys. Rev. Lett., 85, 479.Google Scholar
[79] Gasenzer, T., Berges, J., Schmidt, M. G., and Seco, M. 2005. Nonperturbative dynamical many-body theory of a Bose-Einstein condensate. Phys. Rev. A, 72, 063604.Google Scholar
[80] Berges, J., and Gasenzer, T. 2007. Quantum versus classical statistical dynamics of an ultracold Bose gas. Phys. Rev. A, 76, 033604.Google Scholar
[81] Branschädel, A., and G., Thomas. 2008. 2PI nonequilibrium versus transport equations for an ultracold Bose gas. J. Phys. B: At. Mol. Opt. Phys., 41, 135302.Google Scholar
[82] Bodet, C., Kronenwett, M., Nowak, B., Sexty, D., and Gasenzer, T. 2012. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. College Press, London. Chap. Non-equilibrium quantum many-body dynamics: functional integral approaches.
[83] Berges, J., Rothkopf, A., and Schmidt, J. 2008. Non-thermal fixed points: effective weak-coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 101, 041603.Google Scholar
[84] Berges, J., and Hoffmeister, G. 2009. Nonthermal fixed points and the functional renormalization group. Nucl. Phys., B813, 383.Google Scholar
[85] Scheppach, C., Berges, J., and Gasenzer, T. 2010. Matter-wave turbulence: beyond kinetic scaling. Phys. Rev. A, 81, 033611.Google Scholar
[86] Kronenwett, M., and Gasenzer, T. 2011. Far-from-equilibrium dynamics of an ultracold Fermi gas. Appl. Phys. B, 102, 469.Google Scholar
[87] Babadi, M., Demler, E., and Knap, M. 2015. Far-from-equilibrium field theory of many-body quantum spin systems: prethermalization and relaxation of spin spiral states in three dimensions. Phys. Rev. X, 5, 041005.Google Scholar
[88] Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., and Wieman, C. E. 1997. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett., 78, 586.Google Scholar
[89] Schreck, F., Ferrari, G., Corwin, K. L., Cubizolles, J., Khaykovich, L., Mewes, M.-O., and Salomon, C. 2001. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Phys. Rev. A, 64, 011402.Google Scholar
[90] Catani, J., Barontini, G., Lamporesi, G., Rabatti, F., Thalhammer, G., Minardi, F., Stringari, S., and Inguscio, M. 2009. Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett., 103, 140401.Google Scholar
[91] Erhard, M., Schmaljohann, H., Kronjäger, J., Bongs, K., and Sengstock, K. 2004. Bose-Einstein condensation at constant temperature. Phys. Rev. A, 70, 031602.R).Google Scholar
[92] Shin, Y., Saba, M., Schirotzek, A., Pasquini, T. A., Leanhardt, A. E., Pritchard, D. E., and Ketterle, W. 2004. Distillation of Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett., 92, 150401.Google Scholar
[93] Stellmer, S., Pasquiou, B., Grimm, R., and Schreck, F. 2013. Laser cooling to quantum degeneracy. Phys. Rev. Lett., 110, 263003.Google Scholar
[94] Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C., 6, 1181.Google Scholar
[95] Hadzibabic, Z., Kruger, P., Cheneau, M., Battelier, B., and Dalibard, J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118.Google Scholar
[96] Schweikhard, V., Tung, S., and Cornell, E. A. 2007. Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose- Einstein condensates. Phys. Rev. Lett., 99, 030401.Google Scholar
[97] Krüger, P., Hadzibabic, Z., and Dalibard, J. 2007. Critical point of an interacting two-dimensional atomic Bose gas. Phys. Rev. Lett., 99, 040402.Google Scholar
[98] Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., and Phillips, W. D. 2009. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102, 170401.Google Scholar
[99] Tung, S., Lamporesi, G., Lobser, D., Xia, L., and Cornell, E. A. 2010. Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett., 105, 230408.Google Scholar
[100] Hung, C.-L., Zhang, X., Gemekle, N., and Chin, C. 2011. Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 470, 236.Google Scholar
[101] Prokof'ev, N., Ruebenacker, O., and Svistunov, B. 2001. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett., 87, 270402.Google Scholar
[102] Simula, T. P., and Blakie, P. B. 2006. Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. Phys. Rev. Lett., 96, 020404.Google Scholar
[103] Holzmann, M., and Krauth, W. 2008. Kosterlitz-Thouless transition of the quasitwo- dimensional trapped Bose gas. Phys. Rev. Lett., 100, 190402.Google Scholar
[104] Bisset, R. N., Davis, M. J., Simula, T. P., and Blakie, P. B. 2009. Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas. Phys. Rev. A, 79, 033626.Google Scholar
[105] Cockburn, S. P., and Proukakis, N. P. 2012. Ab initio methods for finite-temperature two-dimensional Bose gases. Phys. Rev. A, 86, 033610.Google Scholar
[106] Hadzibabic, Z., and Dalibard, J. 2011. Nano optics and atomics: transport of light and matter waves. Proceedings of the International School of Physics “Enrico Fermi,” vol. CLXXIII, vol. 34. Rivista del Nuovo Cimento. Chap. Two dimensional Bose fluids: an atomic physics perspective, page 389.
[107] Roumpos, G., Lohse, M., Nitsche, W. H., Keeling, J., Szymańska, M. H., Littlewood, P. B., Löffler, A., Höfling, S., Worschech, L., Forchel, A., and Yamamoto, Y.. 2012. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl. Acad. Sci. U.S.A., 109(17), 6467–6472.Google Scholar
[108] Nitsche, W. H., Kim, N. Y., Roumpos, G., Schneider, C., Kamp, M., Höfling, S., Forchel, A., and Yamamoto, Y. 2014. Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Phys. Rev. B, 90, 205430.Google Scholar
[109] Petrov, D. S., Shlyapnikov, G. V., and Walraven, J. T. M. 2001. Phase-fluctuating 3D Bose-Einstein condensates in elongated traps. Phys. Rev. Lett., 87, 050404.Google Scholar
[110] Shvarchuck, I., Buggle, Ch., Petrov, D. S., Dieckmann, K., Zielonkowski, M., Kemmann, M., Tiecke, T. G., von Klitzing, W., Shlyapnikov, G. V., and Walraven, J. T. M. 2002. Bose-Einstein condensation into nonequilibrium states studied by condensate focusing. Phys. Rev. Lett., 89, 270404.Google Scholar
[111] Hugbart, M., Retter, J. A., Varón, A. F., Bouyer, P., Aspect, A., and Davis, M. J. 2007. Population and phase coherence during the growth of an elongated Bose-Einstein condensate. Phys. Rev. A, 75, 011602.Google Scholar
[112] Binney, J. J., Dowrick, N. J., Fisher, A. J., and Newman, M. E. J. 1992. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. New York, NY: Oxford University Press.
[113] Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena. 4th edn. Oxford, UK: Clarendon Press.
[114] Hohenberg, P. C., and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49, 435.Google Scholar
[115] Baym, G., Blaizot, J.-P., Holzmann, M., Lalöe, F., and Vautherin, D. 1999. The transition temperature of the dilute interacting Bose gas. Phys. Rev. Lett., 83, 1703.Google Scholar
[116] Kashurnikov, V. A., Prokof'ev, N. V., and Svistunov, B. V. 2001. Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett., 87, 120402.Google Scholar
[117] Arnold, P., and Moore, G. 2001. BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett., 87, 120401.Google Scholar
[118] Gerbier, F., Thywissen, J. H., Richard, S., Hugbart, M., Bouyer, P., and Aspect, A. 2004. Critical temperature of a trapped, weakly interacting Bose gas. Phys. Rev. Lett., 92, 030405.Google Scholar
[119] Davis, M. J., and Blakie, P. B. 2006. Critical temperature of a trapped Bose gas: comparison of theory and experiment. Phys. Rev. Lett., 96, 060404.Google Scholar
[120] Smith, R. P., Campbell, R. L. D., Tammuz, N., and Hadzibabic, Z. 2011. Effects of interactions on the critical temperature of a trapped Bose gas. Phys. Rev. Lett., 106, 250403.Google Scholar
[121] Ritter, S., Öttl, A., Donner, T., Bourdel, T., Köhl, M., and Esslinger, T. 2007. Observing the formation of long-range order during Bose-Einstein condensation. Phys. Rev. Lett., 98, 090402.Google Scholar
[122] Donner, T., Ritter, S., Bourdel, T., Öttl, A., Köhl, M., and Esslinger, T. 2007. Critical behavior of a trapped interacting Bose gas. Science, 315, 1556.Google Scholar
[123] Bezett, A., and Blakie, P. B. 2009. Critical properties of a trapped interacting Bose gas. Phys. Rev. A, 79, 033611.Google Scholar
[124] Navon, N., Gaunt, A. L., Smith, R. P., and Hadzibabic, Z. 2015. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science, 347, 167.Google Scholar
[125] Kibble, T. W. B. 1976. Topology of cosmic domains and strings. J. Phys. A: Math. Gen., 9, 1387.Google Scholar
[126] Landau, L. D., and Lifshitz, E. M. 1980. Statistical Physics, Part 1. 3rd edn. Oxford, UK: Butterworth-Heinemann.
[127] Zurek, W. H. 1985. Cosmological experiments in superfluid helium. Nature, 317, 505.Google Scholar
[128] Zurek, W. H. 1996. Cosmological experiments in condensed matter systems. Phys. Rep., 276, 177.Google Scholar
[129] Anglin, J. R., and Zurek, W. H. 1999. Vortices in the wake of rapid Bose-Einstein condensation. Phys. Rev. Lett, 83, 1707.Google Scholar
[130] Weiler, C. N., Neely, T. W., Scherer, D. R., Bradley, A. S., Davis, M. J., and Anderson, B. P. 2008. Spontaneous vortices in the formation of Bose-Einstein condensates. Nature, 455, 948.Google Scholar
[131] Freilich, D. V., Bianchi, D. M., Kaufman, A. M., Langin, T. K., and Hall, D. S. 2010. Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate. Science, 329, 1182.Google Scholar
[132] Gardiner, C. W., and Davis, M. J. 2003. The stochastic Gross-Pitaevskii equation: II. J. Phys. B: At. Mol. Opt. Phys., 36, 4731.Google Scholar
[133] Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J., and Gardiner, C. W. 2008. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys., 57, 363.Google Scholar
[134] Proukakis, N. P., and Jackson, B. 2008. Finite temperature models of Bose-Einstein condensation. J. Phys. B: At. Mol. Opt., 41, 203002.Google Scholar
[135] Cockburn, S. P., and Proukakis, N. P. 2009. The stochastic Gross-Pitaevskii equation and some applications. Laser Phys., 19, 558.Google Scholar
[136] Steel, M. J., Olsen, M. K., Plimak, L. I., Drummond, P. D., Tan, S. M., Collett, M. J., Walls, D. F., and Graham, R. 1998. Dynamical quantum noise in trapped Bose-Einstein condensates. Phys. Rev. A, 58, 4824.Google Scholar
[137] Drummond, P. D., and Corney, J. F. 1999. Quantum dynamics of evaporatively cooled Bose-Einstein condensates. Phys. Rev. A., 60, R2661.Google Scholar
[138] Chang, J. J., Hamner, C., and Engels, P. 2009 Formation of Solitons During the BEC Phase Transition. 40th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics.
Hamner, C., and Engels, P. 2009 Formation of Solitons During the BEC Phase Transition. 40th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics.
[139] Zurek, W. H. 2009. Causality in condensates: gray solitons as relics of BEC formation. Phys. Rev. Lett., 102, 105702.Google Scholar
[140] Damski, B., and Zurek, W. H. 2010. Soliton creation during a Bose-Einstein condensation. Phys. Rev. Lett., 104, 160404.Google Scholar
[141] Witkowska, E., Deuar, P., Gajda, M., and Rzażewski, K. 2011. Solitons as the early stage of quasicondensate formation during evaporative cooling. Phys. Rev. Lett., 106, 135301.Google Scholar
[142] del Campo, A, Retzker, A, and Plenio, M B. 2011. The inhomogeneous Kibble- Zurek mechanism: vortex nucleation during Bose-Einstein condensation. New J. Phys., 13, 083022.Google Scholar
[143] Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F., and Ferrari, G. 2013. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate. Nat. Phys., 9, 656.Google Scholar
[144] Donadello, S., Serafini, S., Tylutki, M., Pitaevskii, L. P., Dalfovo, F., Lamporesi, G., and Ferrari, G. 2014. Observation of solitonic vortices in Bose-Einstein condensates. Phys. Rev. Lett., 113, 065302.Google Scholar
[145] Chomaz, L., Corman, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Beugnon, J., Nascimbène, S., and Dalibard, J. 2015. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Comm., 6, 6162.Google Scholar
[146] Corman, L., Chomaz, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Nascimbène, S., Dalibard, J., and Beugnon, J. 2014. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett., 113, 135302.Google Scholar
[147] Das, A., Sabbatini, J., and Zurek, W. H. 2012. Winding up superfluid in a torus via Bose Einstein condensation. Sci. Rep., 2, 352.Google Scholar
[148] Chesler, P. M., García-García, A. M., and Liu, H. 2015. Defect formation beyond Kibble-Zurek mechanism and holography. Phys. Rev. X, 5, 021015.Google Scholar
[149] Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M., and Stamper-Kurn, D. M. 2006. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose- Einstein condensate. Nature, 443, 312.Google Scholar
[150] De, S., Campbell, D. L., Price, R. M., Putra, A., Anderson, B. M., and Spielman, I. B. 2014. Quenched binary Bose-Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A, 89, 033631.Google Scholar
[151] Papp, S. B., Pino, J. M., and Wieman, C. E. 2008. Tunable miscibility in a dualspecies Bose-Einstein condensate. Phys. Rev. Lett., 101, 040402.Google Scholar
[152] McCarron, D. J., Cho, H. W., Jenkin, D. L., Köppinger, M. P., and Cornish, S. L. 2011. Dual-species Bose-Einstein condensate of 87Rb and 133Cs. Phys. Rev. A, 84, 011603.Google Scholar
[153] Liu, I.-K., Pattinson, R. W., Billam, T. P., Gardiner, S. A., Cornish, S. L., Huang, T.-M., Lin, W.-W., Gou, S.-C., Parker, N. G., and Proukakis, N. P. 2015. Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. Phys. Rev. A, 93, 023628.Google Scholar
[154] Sabbatini, J., Zurek, W. H., and Davis, M. J. 2011. Phase separation and pattern formation in a binary Bose-Einstein condensate. Phys. Rev. Lett., 107, 230402.Google Scholar
[155] Swisłocki, T., Witkowska, E., Dziarmaga, J., and Matuszewski, M. 2013. Double universality of a quantum phase transition in spinor condensates: modification of the Kibble-Zurek mechanism by a conservation law. Phys. Rev. Lett., 110, 045303.Google Scholar
[156] Hofmann, J., Natu, S. S., and Das Sarma, S. 2014. Coarsening dynamics of binary Bose condensates. Phys. Rev. Lett., 113, 095702.Google Scholar
[157] Mathey, S., Gasenzer, T., and Pawlowski, J. M. 2015. Anomalous scaling at nonthermal fixed points of Burgers' and Gross-Pitaevskii turbulence. Phys. Rev. A, 92, 023635.Google Scholar
[158] Pieiro Orioli A., Boguslavski, K., and Berges, J. 2015. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 92, 025041.Google Scholar
[159] Berges, J., and Sexty, D. 2012. Bose condensation far from equilibrium. Phys. Rev. Lett., 108, 161601.Google Scholar
[160] Nowak, B., Sexty, D., and Gasenzer, T. 2011. Superfluid turbulence: nonthermal fixed point in an ultracold Bose gas. Phys. Rev. B, 84, 020506(R).Google Scholar
[161] Nowak, B., Schole, J., Sexty, D., and Gasenzer, T. 2012. Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 85, 043627.Google Scholar
[162] Nowak B., Erne, S., Karl, M., Schole, J., Sexty, D., and Gasenzer, T. 2013. Non-thermal fixed points: universality, topology, and turbulence in Bose gases. In: Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilibrium, Les Houches, 2012 (to appear). arXiv:1302.1448.
[162] Nowak B., Erne, S., Karl, M., Schole, J., Sexty, D., and Gasenzer, T. 2013. Non-thermal fixed points: universality, topology, and turbulence in Bose gases. In: Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilibrium, Les Houches, 2012 (to appear). arXiv:1302.1448.
[163] Schole, J., Nowak, B., and Gasenzer, T. 2012. Critical dynamics of a twodimensional superfluid near a non-thermal fixed point. Phys. Rev. A, 86, 013624.Google Scholar
[164] Schmidt, M., Erne, S., Nowak, B., Sexty, D., and Gasenzer, T. 2012. Nonthermal fixed points and solitons in a one-dimensional Bose gas. New J. Phys., 14, 075005.Google Scholar
[165] Karl, M., Nowak, B., and Gasenzer, T. 2013. Tuning universality far from equilibrium. Sci. Rep., 3, 2394.Google Scholar
[166] Karl, M., Nowak, B., and Gasenzer, T. 2013. Universal scaling at non-thermal fixed points of a two-component Bose gas. Phys. Rev. A, 88, 063615.Google Scholar
[167] Gasenzer, T., McLerran, L., Pawlowski, J. M., and Sexty, D. 2014. Gauge turbulence, topological defect dynamics, and condensation in Higgs models. Nucl. Phys., A930, 163.Google Scholar
[168] Ewerz, C., Gasenzer, T., Karl, M., and Samberg, A. 2015. Non-thermal fixed point in a holographic superfluid. J. High Energy Phys., 05, 070.Google Scholar
[169] Damle, K., Majumdar, S. N., and Sachdev, S. 1996. Phase ordering kinetics of the Bose gas. Phys. Rev. A, 54, 5037.Google Scholar
[170] Bray, A. J. 1994. Theory of phase-ordering kinetics. Adv. Phys., 43, 357.Google Scholar
[171] Connaughton, C., Josserand, C., Picozzi, A., Pomeau, Y., and Rica, S. 2005. Condensation of classical nonlinear waves. Phys. Rev. Lett., 95, 263901.Google Scholar
[172] Aarts, G., Bonini, G. F., and Wetterich, C. 2000. Exact and truncated dynamics in nonequilibrium field theory. Phys. Rev. D, 63, 025012.Google Scholar
[173] Berges, J., Borsanyi, S., and Wetterich, C. 2004. Prethermalization. Phys. Rev. Lett., 93, 142002.Google Scholar
[174] Gring, M., Kuhnert, M., Langen, T., Kitagawa, T., Rauer, B., Schreitl, M., Mazets, I., Adu Smith, D., Demler, E., and Schmiedmayer, J. 2012. Relaxation and prethermalization in an isolated quantum system. Science, 337, 1318.Google Scholar
[175] Jaynes, E. T. 1957a. Information theory and statistical mechanics. Phys. Rev., 106, 620.Google Scholar
[176] Jaynes, E. T. 1957b. Information theory and statistical mechanics. II. Phys. Rev., 108, 171–190.Google Scholar
[177] Rigol, M., Dunjko, V., Yurovsky, V., and Olshanii, M. 2007. Relaxation in a completely integrable many-body quantum system: a. ab inito study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett., 98, 050405.Google Scholar
[178] Rigol, M., Dunjko, V., and Olshanii, M. 2008. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452, 854.Google Scholar
[179] Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., Rohringer, W., Mazets, I. E., Gasenzer, T., and Schmiedmayer, J. 2015. Experimental observation of a generalized Gibbs ensemble. Science, 348, 207.Google Scholar
[180] Nardin, G., Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., André, R., Dang, L. S., Pietka, B., and Deveaud-Plédran, B. 2009. Dynamics of long-range ordering in an exciton-polariton condensate. Phys. Rev. Lett., 103, 256402.Google Scholar
[181] Belykh, V. V., Sibeldin, N. N., Kulakovskii, V. D., Glazov, M. M., Semina, M. A., Schneider, C., Höfling, S., Kamp, M., and Forchel, A. 2013. Coherence expansion and polariton condensate formation in a semiconductor microcavity. Phys. Rev. Lett., 110, 137402.Google Scholar
[182] Lagoudakis, K. G., Manni, F., Pietka, B., Wouters, M., Liew, T. C. H., Savona, V., Kavokin, A. V., André, R., and Deveaud-Plédran, B. 2011. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett., 106, 115301.Google Scholar
[183] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545.Google Scholar
[184] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430.Google Scholar
[185] Berges, J., Boguslavski, K., Schlichting, S., and Venugopalan, R. 2015. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 114, 061601.Google Scholar
[186] Berges, J., Schenke, B., Schlichting, S., and Venugopalan, R. 2014. Turbulent thermalization process in high-energy heavy-ion collisions. Nucl. Phys., A931, 348.Google Scholar
[187] Mace, M., Schlichting, S., and Venugopalan, R. 2016. Off-equilibrium sphaleron transitions in the Glasma. Phys. Rev. D 93, 074036.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×