Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T17:26:52.767Z Has data issue: false hasContentIssue false

“Polymer Solar Modules: Laser Structuring and Quality Control by Lock-In Thermography”

Published online by Cambridge University Press:  30 March 2012

Maik Bärenklau
Affiliation:
- Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, D-98693 Ilmenau, Germany
Burhan Muhsin
Affiliation:
- Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, D-98693 Ilmenau, Germany
Javier Gonzalez Moreno
Affiliation:
- Photovoltaics Group, Department: Technology for Non-Metals, Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
Roland Rösch
Affiliation:
- Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, D-98693 Ilmenau, Germany
Alexander Horn
Affiliation:
- Photovoltaics Group, Department: Technology for Non-Metals, Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
Gerhard Gobsch
Affiliation:
- Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, D-98693 Ilmenau, Germany
Uwe Stute
Affiliation:
- Photovoltaics Group, Department: Technology for Non-Metals, Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
Harald Hoppe
Affiliation:
- Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, D-98693 Ilmenau, Germany
Get access

Abstract:

Polymer solar modules, based on glass or flexible PET-substrates, structured either by laser ablation, mechanical scribing, or by a combination of the two, were prepared and analyzed. The photo-active layer of the solar modules is based on poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester or Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:phenyl-C71-butyric acid methyl ester donor-acceptor bulk heterojunctions. Since such polymer-fullerene solar cells and modules are designed in a multilayer architecture, local defects such as shunts or blocking junctions in the device can cause critical losses to the solar module performance. Of special importance for solar module preparation is the structuring process, as it allows the serial interconnection of the cells. The high precision required for removing neither too few nor too much of the thin layers to be structured presents challenges in the processing of polymer solar modules. Herein we demonstrate that laser structuring is a suitable technology to face these challenges. We report about completely or partially laser structured polymer photovoltaic modules. By using highly sensitive dark lock-in thermography we analyze the influence of defects and failures on the performance and operation of solar module devices. Finally, promising results for fully laser structured solar modules on glass and partly laser structured solar modules on PET are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoppe, H. and Sariciftci, N. S., in Photoresponsive Polymers II, edited by Marder, S. R. and Lee, K.-S. (Springer, Berlin, 2008), Vol. 214, pp. 186.Google Scholar
2. Krebs, F. C., Fyenbo, J. and Jorgensen, M., J. Mater. Chem. 20(41), 89949001 (2010).Google Scholar
3. Krebs, F. C., Tromholt, T. and Jorgensen, M., Nanoscale 2(6), 873886 (2010).Google Scholar
4. Service, R. F., Science 332(6027), 293293 (2011).Google Scholar
5. Liang, Y. Y., Xu, Z., Xia, J. B., Tsai, S. T., Wu, Y., Li, G., Ray, C. and Yu, L. P., Adv. Mater. 22(20), E135E138 (2010).Google Scholar
6. Brabec, C. J., Sariciftci, N. S. and Hummelen, J. C., Adv. Funct. Mater. 11(1), 1526 (2001).Google Scholar
7. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258(5087), 14741476 (1992).Google Scholar
8. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J., Science 270(5243), 17891791 (1995).Google Scholar
9. Krebs, F. C., Sol. Energy Mater. Sol. Cells 93(4), 394412 (2009).Google Scholar
10. Brabec, C. J. and Durrant, J. R., MRS Bull. 33(7), 670675 (2008).Google Scholar
11. Galagan, Y., de Vries, I. G., Langen, A. P., Andriessen, R., Verhees, W. J. H., Veenstra, S. C. and Kroon, J. M., Chem. Eng. Process. 50(5-6), 454461 (2011).Google Scholar
12. Muhsin, B., Renz, J., Drue, K. H., Gobsch, G. and Hoppe, H., Synth. Met. 159(21-22), 23582361 (2009).Google Scholar
13. Haenel, J., Keiper, B., Scholz, C. and Clair, M., Proc. SPIE - Int. Soc. Opt. Eng. 7771, 7771077716 (2010).Google Scholar
14. Haumlnel, J., Keiper, B., Albert, S., Busch, R., Clair, M. and Scholz, C., 25th International Conference on Digital Printing Techniques. Digital Fabrication 2009. 5th Anniversary. Technical Program and Proceedings, 402 (2009).Google Scholar
15. Petsch, T., Haenel, J., Clair, M., Keiper, B. and Scholz, C., Proc. SPIE - Int. Soc. Opt. Eng. 7921, 7921079217 (2011).Google Scholar
16. González, J., Bärenklau, M., Schoonderbeek, A., Muhsin, B., Haupt, O., Rösch, R., Gobsch, G., Teckhaus, D., Hoppe, H. and Stute, U., Proceedings EUPVSEC (2011).Google Scholar
17. Schoonderbeek, A., Bärenklau, M., Rösch, R., Muhsin, B., Haupt, O., Hoppe, H., Teckhaus, D. and Stute, U., Proceedings ICALEO (2010).Google Scholar
18. Schoonderbeek, A., Schuetz, V., Haupt, O. and Stute, U., Journal of Laser Micro Nanoengineering 5(3), 248255 (2010).Google Scholar
19. Hoppe, H., Bachmann, J., Muhsin, B., Drue, K. H., Riedel, I., Gobsch, G., Buerhop-Lutz, C., Brabec, C. J. and Dyakonov, V., J. Appl. Phys. 107, 014505 (2010).Google Scholar
20. Rösch, R., Krebs, F. C., Tanenbaum, D. M. and Hoppe, H., Sol. Energy Mater. Sol. Cells 97, 176180 (2012).Google Scholar
21. Bachmann, J., Buerhop-Lutz, C., Deibel, C., Riedel, I., Hoppe, H., Brabec, C. J. and Dyakonov, V., Sol. Energy Mater. Sol. Cells 94(4), 642647 (2010).Google Scholar
22. Renz, J. A., Keller, T., Schneider, M., Shokhovets, S., Jandt, K. D., Gobsch, G. and Hoppe, H., Sol. Energy Mater. Sol. Cells 93(4), 508513 (2009).Google Scholar
23. Chichkov, B. N., Momma, C., Nolte, S., vonAlvensleben, F. and Tunnermann, A., Applied Physics a-Materials Science & Processing 63(2), 109115 (1996).Google Scholar
24. Haupt, O., Schütz, V. and Stute, U., Proc. SPIE - Int. Soc. Opt. Eng. 7921, 7921079218 (2011).Google Scholar
25. Hoppe, H., Seeland, M. and Muhsin, B., Sol. Energy Mater. Sol. Cells 97, 119126 (2011).Google Scholar