Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T19:19:34.124Z Has data issue: false hasContentIssue false

3 - Diffusion in the Atmosphere

from Part I - Transport of Radioactive Materials in the Environment

Published online by Cambridge University Press:  16 August 2019

Teruyuki Nakajima
Affiliation:
University of Tokyo
Toshimasa Ohara
Affiliation:
National Institute for Environmental Studies, Japan
Mitsuo Uematsu
Affiliation:
University of Tokyo
Yuichi Onda
Affiliation:
University of Tsukuba, Japan
Get access

Summary

In nuclear power plant accidents, enormous amounts of radioactive substances are released over a relatively short period of time (several hours to days). The direction and range over which the substances are dispersed and the amount deposited on the ground surface are influenced not only by the amount that is released but also by meteorological conditions at the time of and immediately following an accident. The most important meteorological factors include wind direction, wind speed and precipitation. Whereas wind direction and speed directly affect the atmospheric transport of radioactive substances, precipitation is the predominant factor that controls the removal of these substances from the atmosphere by wet deposition.

Type
Chapter
Information
Environmental Contamination from the Fukushima Nuclear Disaster
Dispersion, Monitoring, Mitigation and Lessons Learned
, pp. 62 - 111
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achim, P., Monfort, M., Le Petit, G., et al. (2014). Analysis of radionuclide releases from the Fukushima Dai-ichi Nuclear Power Plant accident part II. Pure Appl. Geophys., 171, 645–67, doi:10.1007/s00024-012-0578-1.CrossRefGoogle Scholar
Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013). Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep., 3, 2554.CrossRefGoogle ScholarPubMed
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol., 48(7), 1129–34, doi:10.1080/18811248.2011.9711799.Google Scholar
CTBTO (2011). Fukushima-related measurements by CTBTO. Comprehensive Nuclear-Test-Ban Treaty Organization, Preparatory Commission.Google Scholar
Draxler, R. R., Arnold, D., Chino, M., et al. (2015). World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J. Environ. Radioact., 139, 172–84.Google Scholar
Farchi, A., Bocquet, M., Roustan, Y., Mathieu, A. and Quérel, A. (2016). Using the Wasserstein distance to compare fields of pollutants: application to the radionuclide atmospheric dispersion of the Fukushima-Daiichi accident. Tellus B, 68, 31682, doi:10.3402/tellusb.v68.31682.Google Scholar
Girard, S., Korsakissok, I. and Mallet, V. (2014). Screening sensitivity analysis of a radionuclides atmospheric dispersion model applied to the Fukushima disaster. Atmos. Environ., 95, 490500, doi:10.1016/j.atmosenv.2014.07.010.Google Scholar
Girard, S., Mallet, V., Korsakissok, I. and Mathieu, A. (2016). Emulation and Sobol’ sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident. J. Geophys. Res. Atmospheres, 121, 3484–96, doi:10.1002/2015JD023993.CrossRefGoogle Scholar
Hernández-Ceballos, M. A., Hong, G. H., Lozano, R. L., et al. (2012). Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima. Sci. Total Environ., 438, 80–5.CrossRefGoogle ScholarPubMed
Hirao, S., Yamazawa, H. and Nagae, T. (2013). Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi nuclear power plant: Fukushima NPP accident related. J. Nucl. Sci. Technol. 50, 139147.CrossRefGoogle Scholar
Hirose, K. (2016). Fukushima Daiichi Nuclear Plant accident: atmospheric and oceanic impacts over the five years. J. Environ. Radioact., 157, 113–30, doi:10.1016/j.jenvrad.2016.01.011.Google Scholar
IAEA (ed.) (2015). The Fukushima Daiichi Accident, Vol. 4, Radiological Consequences. Vienna: International Atomic Energy Agency.Google Scholar
Inomata, Y., Aoyama, M., Tsubono, T., Tsumune, D. and Hirose, K. (2016). Spatial and temporal distributions of Cs-134 and Cs-137 derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis. Env. Sci. Process. Impacts, 18, 126–36, doi:10.1039/C5EM00324E.Google Scholar
Ishizuka, M., Mikami, M., Tanaka, T. Y., et al. (2017). Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J. Environ. Radioact., 116, 436–48, doi:10.1016/j.envrad.2015.12.023.Google Scholar
Kajino, M., Ishizuka, M., Igarashi, Y., et al. (2016). Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems. Atmos. Chem. Phys., 16, 13149–72, doi:10.5194/acp-16-13149-2016.CrossRefGoogle Scholar
Kaneyasu, N, Ohashi, H., Suzuki, F., Okuda, T. and Ikemori, F. (2012). Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ. Sci. Technol., 46(11), 5720–6, doi:10.1021/es204667h.Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13, doi:10.1016/j.jenvrad.2012.02.006.Google Scholar
Katata, G., Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70, doi:10.5194/acp-15-1029-2015.CrossRefGoogle Scholar
Kinoshita, N., Sueki, K., Sasa, K., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci., 108, 19526–9, doi:10.1073/pnas.111172410.CrossRefGoogle ScholarPubMed
Kitayama, K., Morino, Y., Takigawa, M., et al. (2018). Model inter-comparison of transport and deposition of atmospheric 137Cs from the Fukushima Dai-ichi Nuclear Power Plant. J. Geophys. Res. Atmos., 123, 7754–70, doi:10.1038/2017JD028230.Google Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP accident related. J. Nucl. Sci. Technol., 50, 255–64, doi:10.1080/00223131.2013.772449.Google Scholar
Korsakissok, I., Mathieu, A. and Didier, D. (2013). Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear power plant accident: a local-scale simulation and sensitivity study. Atmos. Environ., 70, 267–79, doi:10.1016/j.atmosenv.2013.01.002.Google Scholar
Leadbetter, S. J., Hort, M. C., Jones, A. R., Webster, H. N. and Draxler, R. R. (2015). Sensitivity of the modelled deposition of caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME. J. Environ. Radioact., 139, 200–11, doi:10.1016/j.jenvrad.2014.03.018.CrossRefGoogle Scholar
Liu, Y., Haussaire, J.-M., Bocquet, M., et al. (2017). Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima Daiichi accidental releases of radionuclides. Q. J. R. Meteorol. Soc., 143, 2886–90, doi:10.1002/qj.3138.CrossRefGoogle Scholar
Marzo, G. A. (2014). Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose. Atmos. Environ., 94, 709–22, doi:10.1016/j.atmosenv.2014.06.009.CrossRefGoogle Scholar
Mathieu, A., Korsakissok, I., Quélo, D., et al. (2012). Fukushima Daiichi: atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Elements, 8, 195200, doi:10.2113/gselements.8.3.195.CrossRefGoogle Scholar
Mathieu, A., Kajino, M., Korsakissok, I., et al. (2018). Fukushima Daiichi-derived radionuclides in the atmosphere, transport and deposition in Japan: a review. Appl. Geochem., 91, 122–39.Google Scholar
METI (2011). Results of urgent monitoring of radioactive materials around Fukushima Daiich and Daini Nuclear Power Stations. http://bit.ly/2VpUGXJ (accessed 19 September 2018) (in Japanese).Google Scholar
MEXT (2011) Results of the fourth airborne monitoring survey by MEXT. http://bit.ly/2VlOIag (accessed 19 September 2018).Google Scholar
MEXT (2012) Readings of dust sampling by MEXT, as of Sep. 12, 2012. http://bit.ly/2VqRjjy (accessed 19 September 2018) (in Japanese).Google Scholar
Morino, Y., Ohara, T. and Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011gl048689.Google Scholar
Morino, Y., Ohara, T., Watanabe, M., Hayashi, S. and Nishizawa, M. (2013). Episode analysis of deposition of radiocesium from the Fukushima Daiichi nuclear power plant accident. Environ. Sci. Technol., 47, 2314–22, doi:10.1021/es304620x.CrossRefGoogle ScholarPubMed
Nakajima, T., Misawa, S., Morino, Y., et al. (2017). Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Prog. Earth Planet. Sci., 4, 18, doi:10.1186/s40645-017-0117-x.CrossRefGoogle Scholar
Nishihara, K., Iwamoto, H. and Suyama, K. (2012). Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA-Data/Code 2012-018, Japan Atomic Energy Agency.Google Scholar
Nuclear Regulation Authority (2011) Reading of radioactivity level in fallout by prefecture. https://radioactivity.nsr.go.jp/en/list/194/list-1.html (accessed 22 March 2019).Google Scholar
Ohkura, T., Oishi, T., Taki, M., et al. (2012). Emergency monitoring of environmental radiation and atmospheric radionuclides at Nuclear Science Research Institute, JAEA following the accident of Fukushima Daiichi Nuclear Power Plant. JAEA/Data Code 2012-010.Google Scholar
Oura, Y., Ebihara, M., Tsuruta, H., et al. (2015). A database of hourly atmospheric concentrations of radiocesium (134Cs and 137Cs) in suspended particulate matter collected in March 2011 at 99 air pollution monitoring stations in eastern Japan. J. Nucl. Radiochem. Sci., 15, 112.Google Scholar
Périllat, R., Korsakissok, I., Mallet, V., et al. (2016). Using meteorological ensembles for atmospheric dispersion modeling of the Fukushima nuclear accident. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
Quérel, A., Roustan, Y., Quélo, D. and Benoit, J.-P. (2015). Hints to discriminate the choice of wet deposition models applied to an accidental radioactive release. Int. J. Environ. Pollut., 58, 268–79.CrossRefGoogle Scholar
Quérel, A., Quélo, D., Roustan, Y., et al. (2016). Impact of changing the wet deposition schemes in ldX on 137-Cs atmospheric deposits after the Fukushima accident. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
Saito, K., Shimbori, T. and Draxler, R. (2015). JMA’s regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 185–99, doi:10.1016/j.jenvrad.2014.02.007.Google Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modelling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21, doi:10.5194/acp-13-11403-2013.CrossRefGoogle Scholar
Saunier, O., Mathieu, A., Sekiyama, T. T., et al. (2016). A new perspective on the Fukushima releases brought by newly available 137Cs air concentration observations and reliable meteorological fields. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
SCJ (2014). A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident, Committee on Comprehensive Synthetic Engineering, Science Council of Japan. Science Council of Japan.Google Scholar
Sekiyama, T., Kajino, M., and Kunii, M.. (2013). Ensemble Simulation of the Atmospheric Radionuclides Discharged by the Fukushima Nuclear Accident. Vienna: EGU General Assembly.Google Scholar
Sekiyama, T. T., Kunii, M., Kajino, M. and Shimbori, T. (2015). Horizontal resolution dependence of atmospheric simulations of the Fukushima nuclear accident using 15 km, 3 km, and 500m grid models, J. Meteor. Soc. Japan 93, 4964.CrossRefGoogle Scholar
Solazzo, E. and Galmarini, S. (2015). The Fukushima-137Cs deposition case study: properties of the multi-model ensemble. J. Environ. Radioact., 139, 226–33, doi:10.1016/j.jenvrad.2014.02.017.CrossRefGoogle ScholarPubMed
Sørensen, J. H., Amstrup, B., Feddersen, H., et al. (2015). Fukushima accident: uncertainty of atmospheric dispersion modelling (FAUNA). Nordic Nuclear Safety Research.Google Scholar
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43, doi:10.5194/acp-12-2313-2012.Google Scholar
Sugiyama, G., Nasstrom, J., Pobanz, B., et al. (2012). Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response. Health Phys., 102, 493508, doi:10.1097/HP.0b013e31824c7bc9.Google Scholar
Takemura, T., Nakamura, H., Takigawa, M., et al. (2011). A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant. SOLA, 7, 101–4, doi:10.2151/sola.2011-026.Google Scholar
Tanaka, K., Sakaguchi, A., Kanai, Y., et al. (2013). Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem., 295, 1927–37.Google Scholar
TEPCO (2013). Influence to surrounding environment | Archives.Air, 2011, March. The results of nuclide analyses of radioactive materials in the air at the site of Fukushima Daiichi Nuclear Power Station (from the first to the tenth releases). www.tepco.co.jp/en/nu/fukushima-np/f1/index2-e.html (accessed 19 September 2018).Google Scholar
TEPCO (2017). Evaluation of additional release from nuclear reactor building www.tepco.co.jp/nu/fukushima-np/handouts/2017/index-j.html (accessed 19 September 2018) (in Japanese).Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54, doi:10.1016/j.envrad.2012.05.023.Google Scholar
Tsuruta, H., Takigawa, M., and Nakajima, T. (2012). ‘Summary of atmospheric measurements and transport pathways of radioactive materials released by the Fukushima Daiichi Nuclear Power Plant accident’. Proceedings of The First NIRS Symposium on Reconstruction of Early Internal Dose the TEPCO Fukushima Daiichi Nuclear Power Station Accident, pp. 101–111, National Institute of Radiological Sciences, Japan, 1011 July 2012.Google Scholar
Tsuruta, H., Arai, T., Shiba, K., et al. (2013). Atmospheric 131I and 137Cs measured in the east coast of Kanto area and the east Fukushima area in an early period after the Fukushima Dai-ichi Nuclear Power Plant accident. In Proceedings of the 14th Workshop on Environmental Radioactivity. High Energy Accelerator Research Organization, pp. 90–8 (in Japanese).Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., Ohara, T. and Nakajima, T. (2014). First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci. Rep., 4, 6717, doi:10.1038/srep06717.Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., Moriguchi, Y. and Nakajima, T. (2016). Comprehensive retrieval of spatio-temporal distribution of atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Abstract, Goldschmidt Abstracts, p. 3198.Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., et al. (2017) Spatio-temporal distribution of atmospheric radiocesium in eastern Japan just after the TEPCO Fukushima Daiichi Nuclear Power Plant accident: analysis of used filter-tapes of SPM monitors in air quality monitoring stations. Earozoru kenkyu, 32, 244–54 (in Japanese).Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., et al. (2018). Time-series analysis of atmospheric radiocesium at two SPM monitoring sites near the Fukushima Daiichi Nuclear Power Plant just after the Fukushima accident on March 11, 2011. Geochemical J., 52(2), 103–21, doi:10.2343/geochemj.2.0520.Google Scholar
University of Tokyo (2011). The University of Tokyo environmental radiation info (provisional values). http://bit.ly/2UeTgze (accessed 19 September 2018).Google Scholar
UNSCEAR (2013). Sources, effects and risks of ionizing radiation. In UNSCEAR 2013 Report to the General Assembly with Scientific Annexes, Vol. 2, Scientific Annex B. New York: United Nations.Google Scholar
UNSCEAR (2015). Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure to the nuclear accident following the great east-Japan earthquake and tsunami: a 2015 white paper to guide the Scientific Committee’s future programme of work.Google Scholar
UNSCEAR (2016). Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure to the nuclear accident following the great east-Japan earthquake and tsunami: a 2016 white paper to guide the Scientific Committee’s future programme of work.Google Scholar
Winiarek, V., Bocquet, M., Saunier, O. and Mathieu, A. (2012). Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.Google Scholar
Winiarek, V., Bocquet, M., Duhanyan, N., et al. (2014). Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ., 82, 268–79, doi:10.1016/j.atmosenv.2013.10.017.CrossRefGoogle Scholar
WMO (2013). Third meeting of WMO task team on meteorological analyses for Fukushima-Daiichi nuclear power plant accident. http://bit.ly/2ECN7HS.Google Scholar
Yashima, M., Ono, M., Takaya, M. and Ashida, T. (2010). JNIOSH-SRR, 40, 1926.Google Scholar
Yumimoto, K., Morino, Y., Ohara, T., et al. (2016). Inverse modeling of the 137Cs source term of the Fukushima Dai-ichi Nuclear Power Plant accident constrained by a deposition map monitored by aircraft. J. Environ. Radioact., 164, 112, doi:10.1016/j.jenvrad.2016.06.018.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×