
chapter 1

Laws of Nature and Their Modal Surface Structure

In this and the following chapters, I advocate a practice-oriented approach
to questions in the metaphysics of science. I take metaphysics to study –
inter alia – the most general features of reality, among them the issues
covered here: laws, causation, reduction and foundationalism. My
approach starts with the role played by laws, causation and reduction in
scientific practice. The best explanation of the success of the scientific
practice we have, I argue, requires making a number of metaphysical
assumptions about the structure of reality. Thus, the purpose of this and
the following chapters is to examine which metaphysical assumptions we
need to make in order to understand the role that laws of nature, causation
and reduction play in scientific practice. In this context, our practices of
explanation, confirmation, manipulation and prediction play the role of
the explananda in an inference to the best explanation.
I will assume that for an explanation to qualify as the best explanation it

should be minimal: it should contain no assumption that does not do any
work in explaining scientific practice. One may worry that the conclusions
we can draw from a minimality constraint thus defined depend on where
we start our investigation. If we start by looking at practice P1 and move
to an investigation of P2 and P3, it may turn out that, given assumptions A1

and A2, postulating A3 does not do any additional explanatory work.
However, had we started with an analysis of P3, A1 might have turned
out to be explanatorily irrelevant. As a rejoinder I would like to point out
that our starting point is non-arbitrary. Our practice of confirmation,
explanation, etc. in terms of laws of nature – as I will argue in later
chapters – is presupposed in causal reasoning as well as in our reductive
practices but not vice versa. Thus, we cannot avoid looking at the role
laws play in confirmation, explanation, etc. outside causal or reductive
contexts – and how to account for it. Analysing the role laws of nature
play in scientific practice is thus the natural starting point of a minimal
metaphysics of scientific practice.
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We will see how far one can get with scientific practice as the main
epistemic source for metaphysical arguments. Further sources that trad-
itionally play a significant role in metaphysical theorising, such as appeal to
intuitions or a preference for desert landscapes, will only be admitted if
there is an argument as to why such intuitions or preferences should be
considered to be truth conducive.1

Chapters 1 and 2 are both devoted to a characterisation of laws of
nature. While the first chapter focuses on how to best reconstruct law
statements and on modal aspects of laws, Chapter 2 will be concerned
with the practice of hedging laws with ceteris paribus clauses. A full
account of what is the best account of laws will thus have to wait until
the end of Chapter 2.
I will start by arguing that the practices of explanation, confirmation,

manipulation and prediction require a particular reading of the law
statements2 involved as invoking two different kinds of generalisations –
internal generalisations and external generalisations (Section 1.1). Having
reconstructed what law statements say in the light of how they are used in
confirmation, explanation, etc., I will then explain why law statements thus
reconstructed can successfully play the role they play. I argue that law
statements make claims about systems – more precisely, attributing multi-
track properties to systems (Section 1.2). Furthermore, I will analyse the
modal surface structure of law statements. It is part of my approach to
eschew questions as to the origin of the modal features that are delineated
by laws. The question whether or not the modal surface structure is
reducible to non-modal facts may be an interesting question on its own,
but answers to this question typically do not do any work in explaining the
success of the scientific practice we have. Still, my account will comprise
three claims about the modality of laws. First, law statements attribute
a space of possible states to systems. Second, laws constrain the temporal
development of systems by virtue of what I will call law equations. Third,
the laws’ inviolability or natural necessity can be explicated in terms of the
fact that they are invariant with respect to a number of different kinds of
circumstances (Section 1.3).

1 In Chapter 3, I argue that we do have an argument to consider causal intuitions – as opposed to
intuitions of, say, law-governing or metaphysical fundamentality – to be by and large truth
conducive.

2 Although a number of people have reservations about using the expression ‘law’ or ‘law statement’
(e.g., Woodward andHitchcock 2003, 1ff), I will use ‘law statement’ in order to be able to distinguish
law statements from other kinds of generalisations that are involved in scientific practice (see, e.g.,
Section 1.1.3).
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1.1 Law Statements and the Role of Different Kinds
of Generalisations

1.1.1 Law Statements

Let me start with Galileo’s law. It may be thought that Galileo’s law is
simply identical to the following equation:

s = 1
2= gt2 (1.1)

(where s is distance covered, t is time and g is a constant). That seems wrong to
me. It is fairly uncontroversial to take laws or law statements to be those
(maybe complex) generalisations that play a role in extrapolation, confirm-
ation, explanation and other aspects of scientific practice. With this character-
isation of a law statement as a starting point, we can immediately infer the
following consequence: if a law statement is what is confirmed or disconfirmed
in trials (or used in the contexts of explanation, prediction or manipulation),
an equation on its own cannot be an example of a law (or a law statement – in
what follows I will use these two terms synonymously). As a matter of fact,
nobody takes Galileo’s law to be disconfirmed by balls uniformly rolling on
a horizontal plane or by stones lying on the ground, both of which fail to
satisfy Eq. (1.1). What is missing is a claim about the kinds of systems that are
meant to be represented by the equation. Galileo’s law is not simply
a mathematical equation. Nor does it suffice to add that t represents time
and s the path taken by an arbitrary object. Galileo’s law is the claim that the
behaviour of a particular class of systems can be represented by this equation.
A full statement of Galileo’s law might thus be something like the following:

Free-falling bodies behave according to the equation s = 1
2= gt2.

Similarly, F = ma is merely a mathematical equation. It becomes a law
statement once it is asserted that this equation is meant to represent the
behaviour of physical systems; indeed, of all physical systems whatsoever.
And again, the Schrödinger equation with the Coulomb potential on its
own does not qualify as a law statement; that is, it is not what we confirm or
disconfirm. By contrast, the claim ‘Hydrogen atoms behave according to the
Schrödinger equation with the Coulomb potential’ is a law statement.
The fact that equations such as s = 1

2= gt2 come with a domain of systems3

for which they are meant to be relevant has been noted by others, e.g.,

3 Nothing hinges on the term ‘system’ – ‘object’ or ‘thing’ would be fine too. I say a little bit more
about systems in Section 1.2.
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within the semantic account of theories. Thus, Bas van Fraassen, referring
to Ronald Giere, defines a theory (not a law4) as consisting of:

(a) the theoretical definition, which defines a certain class of systems; and
(b) a theoretical hypothesis, which asserts that certain (sorts of) real systems

are among (or related in some way to) members of that class (van
Fraassen 1989, 222).

A preliminary general characterisation of law statements might thus be the
following:

(A) All systems of a certain kind K behave according to Σ.

Here ‘Σ’ – the law predicate – typically stands for an equation or a set of
equations. The expression ‘of a certain kind K’ may refer to all physical
systems whatsoever, as it does in the case of Newton’s second law or in
the case of the bare Schrödinger equation. Or it might refer to a more
circumscribed class of systems such as free-falling bodies or hydrogen
atoms, thus giving rise to so-called system laws.5 It is important to note
that the behaviour attributed to the systems in question is in general
complex and relational. In the case of free-falling bodies, the length of
the path and the time taken are related, not only for actual values of the
variables but for all possible (or some restricted domain of) values. Taking
‘All ravens are black’ as a paradigm for law statements ignores the complex
structure usually attributed to systems.
Another example that illustrates the structure of law statements is

Euclidean geometry. Euclidean geometry on its own is a mathematical
theory without any empirical import. We get an empirically testable claim
(a law) if we take a certain class of systems (space-times) to be adequately
characterised in terms of Euclidean geometry.6

4 In fact, Giere and van Fraassen deny that there are laws of nature (van Fraassen 1989, 183ff).
According to my reconstruction, what Giere and van Fraassen call a ‘theory’ should be taken to be
a law statement.

5 Onemight worry about the exact characterisation of the system to which Σ is attributed. The worry is
that one needs Σ to individuate the systems in question. That, of course, would make the law
statement an analytical truth and thus devoid of empirical content. It has to be assumed that the
relevant class has been individuated antecedently, for example in terms of experimental procedures
(‘free falling bodies’) or by other means that do not depend on Σ. This is a thorny issue that I will not
go into in this book.

6 This point was famously observed by Einstein: ‘As far as the laws of mathematics refer to reality, they
are not certain; and as far as they are certain, they do not refer to reality.’ In fact, Einstein – in his
paper ‘Geometry and Experience’ (Einstein 1921) – suggests a view of laws or theories pretty close to
the one suggested here.
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Law statements as just characterised play a prominent role not only in
physics but also in other disciplines. Thus, the Lotka–Volterra equations
describe the temporal development of a biological system consisting of
two populations of different species, one being a predator and the other
prey. The relevant equations for prey and predator populations are (1) dx/dt =
x (a – by) and (2) dy/dt = – y (c – gx), where x represents the number of prey
and y the number of predators and a, b, c and g are constants. Again, we can
distinguish between the system to which the equations apply, on the one
hand, and the equations or the description of the behaviour, on the other.
Even in cases in which the behaviour in question is not represented

mathematically, it is possible to distinguish the behaviour from the systems
to which it is attributed. Thus, according to Schmalhausen’s law,
a population at the extreme limit of its tolerance in any one aspect is
more vulnerable to small differences in any other aspect. On the one hand,
we have populations (the systems); on the other, we have a qualitative
description of what may happen to the population (the behaviour).

1.1.2 Internal and External Generalisations

Characterising law statements in terms of (A) allows me to draw attention
to an important distinction between different kinds of generalisations.
Take the example of Galileo’s law,

Free-falling bodies behave according to the equation s = 1
2= gt2.

Even though there are often no explicit quantifiers, law statements usually
involve at least two different kinds of generalisations (as will be illustrated
by an example in Section 1.1.3). In Galileo’s law we can distinguish one
form of generalisation that quantifies over systems (for all x that are falling
bodies). This quantification specifies the objects (or systems) to which
a certain kind of behaviour is attributed. Besides generalisations that
pertain to objects or systems, there are system-internal generalisations.
These generalisations concern the values of the variables that appear in
the equation. When we claim that a system behaves according to the
equation s = 1

2= gt2, what is implied is that for every value of t the path
s that the body has fallen is determined by s = 1

2= gt2.
We can therefore distinguish two kinds of generalisations (see Scheibe

1991a)7:

7 Hitchcock and Woodward (2003, 189) draw attention to this distinction, albeit in different terms,
when they remark with respect to explanation that ‘the nomothetic approach has focused on
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(1) System-internal generalisations: Generalisations concerning the values
of variables. For instance, in the case of Galileo’s law, the system-
internal generalisation is that the equation holds for all values of the
variable t (or at least for all values within a certain range).

(2) System-external generalisations: Generalisations concerning different
systems such that the equation pertains to all systems of a certain kind
(e.g., free-falling bodies).

In the case of the Lotka–Volterra equations, the internal generalisations
concern the variables x (number of prey) and y (number of predators),
while the external generalisations concern ecological systems consisting of
prey and predator populations.
In our preliminary law characterisation (A), the system-external gener-

alisation (‘All systems of a certain kind’) is explicitly mentioned while the
system-internal generalisations are implicit in Σ. One reason why internal
generalisations are not made explicit may be the fact that usually more than
one internal generalisation is allowed by the law equation and it is the
context that determines which of those are relevant for the characterisation
of a particular phenomenon. To be a bit more specific, law equations (in
contrast to the structural equations discussed in the causation literature)
are not in general asymmetric. As a consequence, a law equation, such as
pV = νRT, allows us to infer not only that once the values for p and V are
given those of T are determined but also that the values for p and
T determine those for V, etc. The law equation thus implies at least three
different internal generalisations. Which of those is relevant for a particular
situation may depend on the quantities on which we want to intervene or
on other features determined by the context. Similarly, when we claim that
a system behaves according to the equation s = 1

2= gt2, what is implied is not
only that for every value of t the path s is determined by s = 1

2= gt2 but also
that for every path s, the time t that the body has taken to fall is determined
by t = √(2s/g). The law statement allows us to assert both generalisations.
The distinction between internal and external generalisations goes

hand in hand with a distinction between different kinds of counterfactuals
noted by Woodward and Hitchcock. First, we have what Woodward and
Hitchcock (2003, 20) call ‘other object counterfactuals’. Examples of other
object counterfactuals include ‘If b had been a raven it would have been
black’ or ‘If b had been an ideal gas, it would have behaved in accordance

a particular kind of generality: generality with respect to objects or systems other than the one whose
properties are being explained’. By contrast, their own account of explanation relies on generalisa-
tions that pertain to the values of variables.
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with the equation pV = ν RT.’ These counterfactuals presuppose external
generalisations; traditional accounts of laws as external generalisations
stress the fact that laws support other object counterfactuals.8

Woodward and Hitchcock contrast other object counterfactuals with
same object counterfactuals. These pertain to particular systems, such as in
the statement ‘If the ideal gas in question had had a volume V = V0 and
a pressure p = p0 its temperature would have been T = T0.’ Same object
counterfactuals presuppose internal generalisations. Woodward and
Hitchcock argue that it is same object counterfactuals that are relevant
for scientific explanation. I largely agree, though I do not accept the
interventionist account of the truth conditions for these counterfactuals.
In Chapter 2 (Section 2.4.3), we will encounter a third kind of counterfac-
tual connected with law statements.
The fact that law statements come with internal generalisations is

a first hint at the complexity of what law statements assert. Take the
ideal gas law as an example. The law statement is highly complex because
it is a functional law. It implies an infinite number of statements of the
form ‘If the value of p and the value of V of a particular gas had been such
and such then the temperature T would have been thus and so.’ Thus, the
behaviour or properties that law statements attribute to systems are
typically infinitely multi-track (I will examine this issue in more detail
in Section 2.4.3). Note that the infinity of implied statements does not
preclude that the ideal gas law can be stated in finite terms.
The Schrödinger equation provides another illustration of the complex-

ity of law statements. When we claim that hydrogen atoms can be charac-
terised in terms of the Schrödinger equation with the Coulomb potential,
the Σ in our canonical statement ‘All systems of a certain kind K behave
according to Σ’ comprises the conceptual apparatus of quantum mechan-
ics. So, when we say that hydrogen atoms behave according to the
Schrödinger equation with the Coulomb potential, we are saying that
they behave according to quantum mechanics in which the Schrödinger
equation is concretised via the Coulomb potential. The essential point is
that law statements attribute a behaviour to systems already identified as
being of a certain kind by invoking law predicates that typically involve
a highly complex mathematical apparatus. This complexity becomes invis-
ible if we are operating with examples of the ‘All ravens are black’ sort.

8 The role of other object counterfactuals is somewhat controversial because they may be thought to
involve metaphysical impossibilities in the antecedent (see Tan 2019 for discussion). That debate,
however, is not relevant for the purposes of this chapter.
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Examples of the latter kind are misleading because they suggest that law
statements can be analysed solely on the basis of external generalisations.
This assumption shaped much of the debate about laws of nature in the
twentieth century.

1.1.3 Excursus: The Role of Internal and External
Generalisations in Standard Explanation

The distinction between internal and external generalisations will prove
fruitful in later sections of this chapter. It also helps to understand how
certain simple cases of explanations work. Consider an example of what
may be called a ‘standard explanation’(for a discussion of this example see
Skow 2016, 75ff.).
An explanation or answer to the question ‘Why did that rock hit the

ground at a speed of 4.4 m/s?’ might consist in the statement ‘It hit the
ground at that speed because it was dropped from a height of one metre.’ If
the further question arises as to why the one explains the other, an answer
will refer to the equation s = 1

2= gt2.
How exactly does this explanation work? The explanandum in this case

is the velocity of a particular rock (more generally, the state of a system).
The explanans mentions the height and the equation s = 1

2= gt2. So, we have
the general structure that in a standard explanation we explain the state of
a system in terms of initial conditions and a (dynamic) law equation.
The explanation points out how the speed of the rock – in virtue of the

equation s = 1
2= gt2 – depends on the height from which the stone was

dropped; in doing so, the explanation appeals to an internal generalisation.
By contrast, the fact that Galileo’s law covers the rock, as implied by the
external generalisation, is a presupposition for the explanation to work.
Without knowing that the law covers the rock it would not make sense
to explain the velocity in terms of this equation.
More generally, in simple standard explanations like the one just

described, the external generalisation claims that the law predicate Σ is
relevant for the explanandum. This appeal to an external generalisation is
not a part of the explanans but rather, a presupposition of the explanation.
By contrast, internal generalisations typically figure explicitly in the
explanans since they provide information about how one quantity depends
on other quantities.9

9 How does this account relate to Skow’s distinction between levels of reasons why? Skow (2016,
chapter 4) distinguishes a first-level question ‘Why did the rock hit the ground at 4.4\m/s?’ (Answer/
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In the 1960s, Scriven and Hempel debated the role of laws in
explanation. One of the contentious issues was whether laws explicitly
figure in the explanans or whether they provide a ‘role justifying
ground’ ‘roughly showing that the explanans is relevant for the
explanandum’ (Salmon 1984, 17 fn6). By relying on the distinction
between external and internal generalisations we see that law state-
ments play both roles. The external generalisation does not figure
explicitly in our simple standard explanation; it provides a ‘role justi-
fying ground’. By contrast, the internal generalisation is explicitly
appealed to in the explanation.
To sum up: what I do hope to have shown is that not only external

but also internal generalisations can play a role in explanation and
that the distinction is thus significant for understanding scientific
practice.

1.2 Systems

Up to this point I have reconstructed what we should assume law state-
ments to say given their role in confirmation, explanation, etc. I will now
turn to an explanation of why law statements thus reconstructed can
successfully play the role they play.
In Section 1.1.1, I argued that law statements attribute a certain kind of

behaviour to systems: All physical systems of a certain kind K behave
according to Σ’? A pretty straightforward explanation of why we can
successfully work with such law statements is the assumption that systems
that display the relevant behaviour do in fact exist.
To talk of ‘systems’ and ‘behaviours’ is very common in the sciences.

Systems come in all kinds of sizes, including space-times, economies,
interacting predator–prey populations, cells, gases and hydrogen atoms.
In contrast to the notion of substance (on some interpretations), systems
do not carry with them notions of fundamentality or indivisibility; systems

reason: it was dropped from 1 m) from a second-level question ‘Why is being dropped from 1\m
a reason for it having the speed of 4.4\m/s?’ (Answer/reason: s = ½ gt2, etc.) I have not made this
distinction between these different levels of why questions, but it would do no harm to my argument
if I did.What is important for me is to distinguish a third-level question that Skow does not consider:
‘Why is it that the equation s = ½ gt2 is relevant for the second-level answer?’ An answer to the third-
level question has to appeal to the external generalisation, while an answer to the second-level
question appeals to the internal generalisation. Thus, for my purposes the issue of whether first
and second level need to be distinguished is not relevant; what is relevant, however, is that the third
level can be distinguished.
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may be fairly complex, they might be constituted out of subsystems, and
so on.10

In the case of physical systems, we can distinguish different aspects of
their behaviour. Some quantities of a physical system are constant; others
vary with time. For instance, for a single classical particle we can distin-
guish position and momentum as changing quantities, whereas mass
remains constant. The values of the varying quantities at a particular
time are called the ‘state’ of the physical system at this time. However,
the constants and the state of a system do not determine the complete
behaviour of the system. We also have equations that describe the connec-
tions between the various quantities involved and in particular how the
state of the system develops over time: its temporal development or
dynamics.
Talk of ‘behaviour’ indicates that often what is attributed to systems is

not just a set of static properties but rather a certain temporal development.
The Lotka–Volterra equations, for example, tell us how the predator–prey
system will develop over time. Similarly, the Schrödinger equation applied
to certain kinds of systems describes their dynamics.
I have argued that, in order to make sense of the fact that law statements

are taken to be confirmable or disconfirmable, we need to understand them
as attributing behaviour to systems. The assumption that we can identify
systems that behave in certain ways is thus essential for understanding
scientific practice, at least to the extent that this practice involves law
statements.
Thus, whatever the content of a scientific theory or law, that is, whatever

structure is attributed to reality by the law predicate Σ, the analysis of this
structure cannot show that there are no systems or that there are no things.
For instance, it is sometimes suggested that contemporary physics, particu-
larly the phenomenon of indistinguishable particles, shows that there is
no place for objects (or systems) with intrinsic natures in metaphysics
(Ladyman and Ross 2007, 131). Such a claim is a non-sequitur, as I will
now argue.
For the purpose of illustration, consider a two-electron system.

(Normalised) vectors in two-dimensional Hilbert spaces represent the
spin states of the separate particles. The possible spin states of the

10 As I will argue in more detail in Chapter 3, nature may suggest but does not dictate how to draw the
boundaries of the systems in which we are interested; that is, it does not dictate how to individuate
systems. This is particularly obvious when we are dealing with macroscopic systems. A commitment
to systems is thus not a commitment to nature having joints that are completely independent of
pragmatic considerations (see Section 3.5.2).

20 Laws of Nature and Their Modal Surface Structure

https://doi.org/10.1017/9781009023542.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023542.002


compound system are all those states that can be represented as (normal-
ised) vectors in the tensor product of the Hilbert spaces associated with the
separate particles Hs = H1 ⊗H2. If we take as a basis for H1 the eigenvectors
in the spin z-direction |ψ z-up1> and |ψ z-down1> and as a basis for H2 |ψ

z-up2>
and |ψ z-down2>, the following superposition state will be among the
possible states of the (normalised) compound system:

Φ = 1/√2 |ψ z-up1˃ ⊗ |ψ z-down2˃ – 1/√2 |ψ z-down1˃ ⊗ |ψ z-up2˃.

If the electrons are in such an entangled state, it is true that the electrons
cannot be described as two individual particles with intrinsic properties,
where intrinsic properties are conceived of as properties that the systems
have independently of the properties of other systems (see, e.g., Ladyman
and Ross 2007, 135ff). However, even if the indistinguishability and non-
individuality of the electrons are granted, it does not follow that there are
no things or systems. The system to which the entangled state is attributed
(the ‘two-electron system’) may still be a system with intrinsic properties or
states.
The problem with Ladyman and Ross’s claim is not only that the

argument from the indistinguishability of particles to the claim that
there are no things or systems is a non-sequitur. In fact, when we try to
confirm claims about the indistinguishability of particles, we have to
presuppose the existence of things or systems.
This fact is nicely illustrated by the research that was awarded the Nobel

Prize in Physics in 2001. As one of the recipients of the prize notes, ‘The
phenomenon of Bose-Einstein condensation (BEC) is the most dramatic
consequence of the quantum statistics that arise from the indistinguish-
ability of particles’ (Ketterle 2007, 159). The prize was awarded for the
empirical confirmation of the consequences of the indistinguishability of
particles, specifically ‘for the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early fundamental studies of the
properties of the condensates’ (Nobel Prize press release 2001). What this
reinforces is that confirming the empirical consequences of the indistin-
guishability of particles requires systems or objects, such as ‘dilute gases’ or
‘condensates’.
Furthermore, the Nobel Prize-winning research concerning the indis-

tinguishability of the parts of a system does not tell us that the properties of
the condensate fail to be intrinsic. Bose–Einstein condensates may very
well be systems with intrinsic properties or behaviour, which can be
studied independently of relations to other systems. It tends to be over-
looked that law statements are statements about systems if theories are simply
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taken to be sets of equations and if they are analysed without taking into
account that their empirical import is generated by the assumption that
these are true of something in the real world.
It may be objected that considerations of quantum entanglement lead

us to the view that there is only one system with intrinsic properties – the
universe as a whole. That may very well be true, but it would still be in
conflict with the claim that there are no systems. Furthermore, what we
need to understand is why we can successfully treat subsystems of the
universe as if they exhibited their behaviour independently of other systems
in the world (more on this in Chapter 2).
According to another objection, there is less of a conflict than it first

appears between Ladyman and Ross’s denial of systems or things and my
insistence that we have to assume their existence. While it is true that
structural realists sometimes claim that there are no things (Ladyman and
Ross 2007, p. 130: ‘a first approximation to our metaphysics is: “There are
no things. Structure is all there is”’; see also French 2014, chapter 7: ‘The
Elimination of Objects’), neither Ladyman and Ross nor French deny that
we can meaningfully talk about (everyday) objects. Both have their ways of
accommodating true assertions about medium-sized objects in a world that
(according to their view) strictly speaking does not contain any. Thus,
according to French, ‘we can reject tables, people, everyday objects in
general as elements of our fundamental ontology, whilst continuing to
assert truths about them’ (2014, 167). However, in contrast to Ladyman,
Ross and French, for the reasons outlined in this section I don’t think we
can reject systems or objects as elements of our fundamental ontology.
They cannot be analysed away if we want to understand the success of our
scientific practice.
Let us now have a closer look at how Ladyman and Ross argue against

intrinsic natures:

[. . .] talk of unknowable intrinsic natures and individuals is idle and has no
justified place in metaphysics. This is the sense in which our view is
eliminative; there are objects in our metaphysics but they have been purged
of their intrinsic natures, identity and individuality, and they are not
metaphysically fundamental. (Ladyman and Ross 2007, 131)

It seems, however, that scientific practice in at least some cases gives us very
good reasons to suppose that there are systems with intrinsic properties,
provided an intrinsic property can be taken to be a property of a system
that the system has independently of the properties of other systems and its
interactions with such systems.
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In experimentation we typically try to shield from interfering factors;
we try to causally isolate the system under investigation – that is, we try to
figure out how the system would behave if it were on its own – not
interacting with the world. Shielding and isolation point to the fact that
in experimentation we try to determine properties of systems that these
systems have independently of the properties of other systems and their
interactions with such systems. Presumably, even in the case of the experi-
mental determinations of the behaviour of dilute gases of alkali atoms, as
well as studies of the properties of the condensates, the experimenters
determined intrinsic properties of the systems in question.
If we take into consideration scientific practice as a source of metaphys-

ics of science, we have very good reasons to stick with at least some of the
features Ladyman and Ross classify as ‘standard metaphysics’ (Ladyman
and Ross 2007, 151) – namely, that science deals with systems and their
intrinsic properties.

1.3 Modal Surface Structure

What I have argued so far is that law statements attribute complex (multi-
track) behaviour to systems via law predicates. I will now examine the
modal aspects of this behaviour in more detail. Traditionally, when the
nomological or modal character of laws is discussed, the focus is on external
generalisations of the kind ‘All Fs are Gs.’ Armstrong, for instance, argues
that the properties of, say, being an electron and having a certain charge are
related by a sui generis relation of nomological necessitation that explains
why all electrons have charges. Bird holds that the fact that all negative
charges repel each other obtains in virtue of the negative charges’ essence.
In this section I will attempt to show that examining internal generalisa-
tions and their role in scientific practice will unfold a rich modal structure
underlying the characterisation of the behaviour of systems. More particu-
larly, I will advocate the following claims: Law statements attribute a space
of possible states to systems (Section 1.3.1). Laws constrain the temporal
development of systems by virtue of law equations (Section 1.3.2). The
laws’ ability to constrain, their natural necessity, can be explicated in terms
of the fact that they are invariant with respect to a number of different
kinds of circumstances (Section 1.3.3).
I use the term ‘modal surface structure’ because even though I will argue

that nomological or natural necessity, as well as all the natural dependence
relations we will encounter in later chapters (dispositional modality, causal
dependence, part-whole dependence), can be explicated in terms of
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invariance, invariance is a modal notion itself, and I will make no attempt
to reduce modal facts to non-modal facts.

1.3.1 A Space of Possibilities

In order to understand the role of internal generalisations in scientific
practice we need to distinguish two features. First, internal generalisations
quantify over a domain of values for variables, which serve as possible initial
or boundary conditions. Second, internal generalisations typically include
a law equation. The law equation restricts or determines the values for the
variables of the system or the values for variables that characterise the
temporal development of the states of the system. I will deal with the law
equation in the next section.
By virtue of internal generalisations, laws attribute a space of possible

states to systems. In the case of dynamical laws, it is assumed that the
systems have a set of possible initial states. With respect to these states we
can distinguish two cases. Either the domain of quantification comprises
all possible states (e.g., in the case of Newton’s second law or the
Schrödinger-equation) or, as is the case in more specific laws, the domain
of quantification comprises only a restricted range of states. Hooke’s law,
for example, holds only for a limited range of elongations.
What is essential for our investigation is the fact that in both cases we are

dealing with a modal presupposition because it is not only actual states or
actual behaviour with which the internal generalisations are concerned. In
fact, the internal generalisation on its own does not even tell us which state
of the system is the actual state. The internal generalisation’s concern is
possible behaviour only (whether actual or non-actual). Thus, the fact that
internal generalisations come with a domain of values for variables requires
the assumption that law statements attribute a space of possible (and
mutually exclusive) states to systems.
That laws attribute to systems a space of possible behaviour has

recently been discussed as a threat to Humean accounts of laws of
nature, because (a) it seems to be prima facie problematic to square
this feature with the requirement of informational strength and (b) it
may indicate that laws give not only information about patterns in the
Humean mosaic but also genuinely modal information (see Hall 2015;
Hicks 2018; Jaag and Loew 2020). For instance, Ned Hall observes that

it is worth noting that breadth or permissiveness of the [range of initial
conditions] makes for a certain kind of explanatory strength. For it is, other
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things equal, a point in favor of a physical theory that it recognizes a wide
range of nomologically possible initial conditions. Compare, for example,
Keplerian and Newtonian accounts of the solar system. Granted that the
Newtonian account is much more empirically accurate; it is also, from the
standpoint of scientific investigation, better in a distinct sense: for it allows
us to answer questions not merely about how the elements of the solar
system did, do, and will behave, but also about how they would have
behaved under alternative physical conditions. (Hall 2015, 263)

Many laws of nature – in particular the dynamical laws of fundamental
physical theories – allow for a wide range of initial conditions. The fact
that laws come with a range of possible states is essential for the role
laws of nature play in scientific practice, as the following examples
illustrate.
One case is the application of law statements in engineering contexts.

Suppose an engineer considers different ways to build a bridge.
Specifically, she will be considering different (e.g., Newtonian) models
for the bridge: she will consider a scenario S1 in which the bridge is built
with materials M1 and a scenario S2 in which the bridge is built with
materials M2. First, the engineer will determine how Newtonian mechan-
ics describes what would be the case if the bridges were built. She will
furthermore ascertain what would happen in these models if certain
parameters were varied: whether the hypothetical bridge would remain
stable if the traffic were of a certain kind, if the weather conditions
changed, and so on. Hence, a scientist or engineer will be interested not
only in what is actually the case, but also in what is non-actual but
(nomologically) possible. Such information about what is possible and
what isn’t is needed in order to know how to manipulate a system such that
it reaches a designated state, for instance that the bridge doesn’t collapse
given the expected traffic.
More generally, it might be argued that laws play a role in decision

making. It is constitutive for decision making that various possible
outcomes are examined – in order to explore how different situations
would develop – due to the laws of nature. Laws can only play this role
because of the fact that they come with a range of (possible) initial
conditions.
Furthermore, in the explanation of events – if we followWoodward and

Hitchcock’s account of explanation – we appeal to laws or generalisations
not because they tell us what is actually the case but because they provide
modal information. According to their account, we can explain why
a gas G has a certain temperature T0 by showing how the temperature

Modal Surface Structure 25

https://doi.org/10.1017/9781009023542.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023542.002


T depends on the pressure p of the gas and its volume V (Hitchcock and
Woodward 2003, 4). Hitchcock and Woodward contrast their account
with the deductive nomological account of explanation:

the generalization [. . .] not only shows that the explanandum was to be
expected, given the initial conditions that actually obtained, but it can also
be used to show how this explanandum would change if these initial and
boundary conditions were to change in various ways. (Hitchcock and
Woodward 2003, 4)

According to Woodward and Hitchcock, the counterfactuals that are
explanatory do not only appeal to information about what is actually the
case (or what was the case) but also to nomologically possible but non-
actual behaviour of systems. This possible but non-actual behaviour is
characterised in terms of the law equation and the domain of quantifica-
tion of the internal generalisation. The counterfactuals rely on non-actual
but nomologically possible states of the gas and thus on the modal
structure that the law statements attribute to systems.
To conclude: Internal generalisations on their own do not tell us

which state a system is actually in. To determine the actual state of the
system we need additional information – information about the actual
values of the variables that characterise the system. With respect to the
states of a system, the law statement (by virtue of the domain of internal
generalisations) gives us purely modal information: information about
(nomologically) possible and mutually exclusive states in which the
system might be.

1.3.2 Constraints

In the previous section I argued that law statements attribute a space of
possibilities to systems due to the fact that internal generalisations quantify
over a domain of values for variables that represent mutually exclusive
possible states of a system. Let me now turn to the second aspect of internal
generalisations that is relevant for the examination of modal structure, the
law equation. I will argue that we need to assume a further modal feature to
make sense of our scientific practice concerning law statements: law
statements do not simply register the past, present and future behaviour
of systems; they describe how this behaviour is constrained. While in this
section I will introduce the claim, in the next section I will argue that if we
understand this claim in terms of invariance relations, this best explains
a certain feature of scientific practice, namely, why we can rely on laws.
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Internal generalisations put restrictions on the space of possible behav-
iour of systems by establishing relations between variables (i.e., law equa-
tions). These restrictions can either concern the synchronic co-possibility
of values of variables that characterise the state of a system – as in the case of
the ideal gas law – or the temporal evolution of the states of a system – as in
the case of the Schrödinger equation.
In the case of a synchronic law (law of coexistence), such as, e.g., the

ideal gas law, the set of possible values for the variables p, V and T is
restricted to those that satisfy the equation pV = ν RT. Thus, the possible
states of the gas are constrained to a two-dimensional hypersurface of the
three-dimensional space that is generated by the variables p, V and T. The
internal generalisation does not only provide information about how
the actual state of a system (if known) is constrained. In addition, it tells
us how all possible states of the system are constrained, whether or not they
are actual. That the systems are constrained means that those states not on
the hypersurface are not accessible to the system. They are classified as
states the system cannot possibly occupy, given the law equation, i.e., as
nomologically impossible states.
The fact that the gas satisfies the equation of the gas law allows

a scientist or an engineer who is able to manipulate pressure and volume
to ensure that the gas will have a certain temperature. Similarly, the
engineer might want to prevent certain situations, such as preventing
a gas from having a certain temperature. In such cases she will rely on the
fact that the law tells us that certain combinations of pressure, volume
and temperature will not occur; by setting pressure and volume appro-
priately we can make sure that a certain temperature value will not
obtain.
The same holds for internal generalisations that describe the temporal

evolution of a state of a system. Provided we prepare the system under
consideration in a certain state, and provided the equation in question is
deterministic, we can ensure that at a later time the system is in a certain
state, and we can also prevent the system from being in certain other
states.
In the case of prevention, it is not only that given certain combinations

of, say, pressure and volume, certain values for T simply do not occur.
There is a sense in which these values cannot occur.11 The use scientists and
engineers make of internal generalisations in scientific practice is best

11 For this reason, Popper conceived of laws as ‘prohibitions’ (Popper 1959, §15).
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understood by assuming that internal generalisations represent modal, that
is, nomologically necessary, relations.12

That internal generalisations ought to be understood in this way
requires taking a certain perspective, the perspective of a scientist or
engineer operating within the universe, in contrast to the omniscient
outside observer whose sole job is to document the world. In discussions
about laws of nature the dominant perspective is that of ‘a scientist
operating outside the universe and looking in. This ideal scientist starts
with the knowledge of all the facts of the world, so the only task left to her
is to organize them’ (Hicks 2018). This ideal, inward-looking scientist has
two pertinent features: she is omniscient and she is interested in the
description or the organisation of facts only. This, however, is not the
perspective taken in scientific practice and it leaves out why laws are best
understood as – at least prima facie – representing nomologically necessary
relations. The essential difference is that a real engineer or scientist – in
contrast to the ideal scientist – will rely on the internal generalization in the
sense that the generalization tells her that any other value than the one that
is determined by the equation pV = ν RT cannot occur.13 The notion of
invariance that I introduce in the next section will clarify what it means
that a scientist relies on laws.

1.3.3 Invariance

It may seem that in the previous section I have illegitimately smuggled in
modal terminology. Instead of saying that the law equation of an internal
generalisation states a relation between the values of different variables,
I have said that the values of the variables are constrained or restricted, that
they obtain with nomological necessity. Why this modal terminology? Why
claim that a certain value of T cannot (fail to) occur? Why argue that,
provided certain values for p and V, the occurrence of a certain value of T is
nomologically necessary and that we can rely on this?
The essential point is that laws – as opposed to accidental generalisations –

do not simply state that a relation between variables obtains. Looking at

12 As a reminder, I am not arguing against the Humean at this point; I am interested in the modal
surface structure that may or may not be reducible to non-modal facts.

13 A focus on laws as instruments or tools for limited beings may have always been part of Lewis’s best
system analysis (Jaag and Loew 2020). Recently, there have been various attempts to argue along
these lines, that is, to claim that laws should be conceived as instruments for cognitively limited
beings that operate inside the universe (Hicks 2018; Jaag and Loew 2020; Ismael 2015). However, in
the past, in the literature on laws of nature there has always been a focus on explanation and
description rather than on manipulation.
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scientific practice, i.e., not simply looking at the law statement or the law
equation itself but examining their role, i.e., how they are used, reveals that
law statements should be understood as implying independence or invari-
ance claims. For example, the ideal gas law is understood as implying that in
a gas the value for T is fixed under a wide variety of circumstances: if certain
values for p and V are fixed, thenwhatever other features the gas may have and
whatever else is going on in the universe, a certain value for T is determined. It
is part of how the content of the internal generalisation is understood that it
is only the values of p and V that determine the value for T. An essential
aspect of what laws tell us is that those variables that do not occur in the law
equation are irrelevant for the determination of the values of certain other
variables whatever the circumstances may be.
The ideal gas law, if true, is not a mere truth. Its being a law means that

nobody could bring about a situation such that it is false. No person or
government could bring it about that in an ideal gas the values of pressure,
temperature and volume fail to be on the two-dimensional hypersurface
that is determined by the ideal gas law.14 In this sense, the behaviour of the
gas is constrained or nomologically necessary. By contrast, an accidental
generalisation may state that a certain equation or correlation between, say,
variables representing the bread prices in London and the water levels in
Venice may actually obtain. However, the equation representing the
accidental generalisation is not taken to be invariant – it is not taken to
continue to hold if, for instance, the British government fixes the price of
bread.
The fact that the law and the accidental generalisation are used

differently, that they play a different role in scientific practice, is best
explained by assuming that laws state relations that are invariant. An
illustration of this claim is that we can rely on laws but not on accidental
generalisations, precisely because the former imply, as I argued before,
that many features of the universe are irrelevant for the determination of
the behaviour of the system we are interested in. The engineer or scientist
in our world – in contrast to the ideal, inward-looking scientist – does not
know all the facts of the world. She is confronted with epistemic risk
when she is predicting, manipulating or constructing systems. What we
need to explain is why this scientist or engineer can rely on what she takes
to be laws. What is it about laws that accounts for the possibility of
relying on them? With the notion of invariance, we can make sense of

14 The same holds for real gases and more realistic gas law equations such as the Peng–Robinson
equation.
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why the scientist and the engineer rely on (what they take to be) laws
rather than on accidental regularities.
Suppose a scientist S at a certain time has encountered the same number

of positive instances for two claims, P1: 8x (Fx→Gx) and P2: 8x
(Mx→Nx). Suppose that in the case of P2 but not in the case of P1 there
is furthermore evidence for invariance – evidence, say, that P2 holds under
all kinds of changes of the behaviour of other (e.g., neighbouring) systems.
For S it is now much more reasonable to be confident that P2 will continue
to hold, compared with P1, because there is evidence for the fact that P2 is
stable and will not break down if changes in the environment occur. S can
and will rely on P2 much more so than on P1. Thus, if having evidence for
the nomic character of a generalisation means – as I have argued – having
evidence for invariance relations, we can understand why scientists and
engineers rely on laws much more than on other generalisations.
To sum up, the role that internal generalisations and in particular law

equations play in scientific practice is best understood by assuming not
only that they describe relations between variables but also that they imply
that these relations hold with nomological necessity, which is best under-
stood in terms of the fact that they are invariant in a number of respects. In
the remainder of this section I will examine these invariances in some
detail.
The idea of spelling out the modal aspects of laws of nature in terms of

invariance is not new; Mitchell (2003, 140), Lange (2009) and Woodward,
to name a few, have done so before. I will not discuss any of these approaches
in any detail. Let me, however, mention Woodward (1992; 2018), whose
view is probably closest to the one presented here. He explicitly endorses the
idea that nomological necessity should be understood as an invariance
claim: ‘Wemay say that a law, in contrast to an accidentally true generaliza-
tion, expresses a relationship which not only holds in the actual circum-
stances but which will remain stable or invariant under some fairly wide
range of changes or interventions’ (Woodward 1992, 202).
Invariance is clearly a modal notion. It concerns not only actual but also

counterfactual changes. While it might be argued that moving from one
modal notion (nomological necessity) to another (invariance) is not much
progress, there is certainly at least one advantage. The notion of invariance
naturally leads to a closer examination of the modal structure delineated by
the internal generalisations. Invariance is a relative notion, and we thus
have to ask, ‘Invariance with respect to what?’ Furthermore, as we will see
later, the concept of invariance helps to understand howmodal notions can
be empirically accessible.
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WhileWoodward has briefly alluded to some distinctions among invari-
ance relations (2003, chapter 6; 2018), there has been no systematic
examination.
We can specify the following invariance relations, which will shed light

on the inviolability of laws or their nomological necessity:

1) Invariance of the law equation with respect to initial conditions. The law
equation holds irrespective of which values from a certain range of
initial conditions, or boundary conditions or other sets of variables,
obtain or would obtain. Newton’s second law, a dynamic law, was
supposed to hold for any place and any initial velocity characterising
a system. By contrast, the ideal gas law holds only for a restricted range
of values of p and V (when read as determining T). Both law equations
are invariant with respect to at least some initial conditions; note that
this is an invariance with respect to the values of variables that
explicitly figure in the law equation.

The other two kinds of invariances that I will discuss concern invariances
with respect to features of the world that are not represented as variables in
the law equation.

2) Invariance of the law equation with respect to other features of the systems.
When we determine the speed of a free-falling body there are
a number of properties that can be ignored, such as the shape and
the colour of the falling body. That is what Galileo’s law implies by
not mentioning them. The fact that certain variables do not figure
explicitly in the law equation (and cannot be determined by those
explicitly mentioned) implies that the law equation is invariant with
respect to these variables. The law equation in the ideal gas law is in
practice understood as saying not only that the temperature of actual
ideal gases is determined by the pressure and the volume but also that
there is no other feature that might be relevant: neither smell, nor the
shape of the molecules, and so on.
In the case of macroscopic laws, two kinds of properties with respect

to which invariance may occur ought to be distinguished:
a. Same-level properties; for example, colour, shape, mass in the case

of free-falling bodies.
b. Lower-level or constitutional properties; for example, the molecu-

lar structure of the gases in the case of the ideal gas law. This kind
of invariance plays a major role in discussions about universality
in the context of phase transitions. Two different kinds of
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micro-physical invariances are relevant. First, macroscopic phys-
ical properties may be invariant with respect to changes of the
system’s dynamical state on the micro-level. Second, the macro-
behaviour might even be invariant with respect to non-actual
counterfactual changes in a system’s composition at the micro-
level. For instance, in a ferromagnetic system one might add next-
nearest neighbour interactions to a system originally having only
nearest neighbour interactions and scale down the strength of the
original interaction in a manner that would leave the macroscopic
magnetization of a system invariant (see Hüttemann, Kühn and
Terzidis 2015).

Whether or not a law equation is invariant with respect to features of
the system not represented in the law equation is a matter that needs to
be established empirically. If such invariances obtain, we are justified
in abstracting away from the relevant features of the system in the law
equation we use to describe the system’s behaviour. It may, of course,
happen that as a result of empirical investigations, certain invariance
claims with respect to other features of the system under consideration
have to be given up. That will lead to law equations that contain more
variables. Thus, for instance, the ideal gas equation was at some point
replaced by the van derWaals equation, the Peng–Robinson equation,
and so on, equations that take into account some features of the
molecules that constitute the gas.

3) Invariance of the law equation with respect to the behaviour of other
systems in the universe. Newton’s second law adequately describes the
behaviour of any (physical) body irrespective of the behaviour of
other systems in the universe. This is not to say that other systems
cannot have an influence on the system we attempt to characterise in
terms of Newton’s second law but rather that the law equation
continues to hold for the body despite external forces being
impressed on it. Whatever the forces are that affect a certain system,
Newton’s second law will continue to hold for the system under
investigation.

The status or role of the three kinds of invariance relations is somewhat
different. The first kind of invariance (invariance with respect to initial
conditions) merely expresses the fact that the law equation holds for more
than one set of values of the relevant variables. This is part of the content of
what the law explicitly says about the behaviour of systems. The second
kind of invariance (invariance with respect to characteristics of the system

32 Laws of Nature and Their Modal Surface Structure

https://doi.org/10.1017/9781009023542.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023542.002


that are not represented in the law equation) provides a rationale for
abstracting in the law equation from the features in question. The third
kind of invariance (invariance with respect to the behaviour of other
systems in the universe) seems to be most relevant for accounting for the
inviolability or natural necessity of laws. If this kind of invariance holds,
then whatever changes there are, the law equations will remain the same.
There is an interesting and important further contrast between the

invariance of the law equation with respect to other features of the same
system and the invariance of the law equation with respect to the behaviour
of other systems in the universe when it comes to evidence for the failure of
invariance. Whereas in the former case, as already indicated, the law
equation will be revised (in the light of sufficient evidence), in the latter
case, one strategy is to hedge the law by a ceteris paribus clause. Instead of
revising the law equation in Galileo’s law when it comes to falling objects
in water or other media, it may be argued that the law holds ceteris paribus.
I will deal with this issue in Chapter 2.
Let me add a few remarks about the notion of invariance.
First, I agree with Woodward that invariance-based accounts of nomo-

logical necessity ‘provide a naturalistic, scientifically respectable and non-
mysterious treatment of what non-violability and physical necessity
amount to’ (Woodward 2018, 160). Invariance claims can be scientifically
investigated. For example, if it is argued that a certain law equation is
invariant with respect to the colour of the system, it is reasonably clear what
is claimed and we know how to check the claim. Furthermore, macro-
scopic invariance claims (e.g., the invariance of the behaviour of gases with
respect to their constitution) can at least in principle be explained in terms
of lower-level laws (as well as experimentally investigated).
Let me add that I see no reason to believe that there is a special problem

with knowing invariance facts simply because they are modal facts. Here is,
for instance, howGalileo’s spokesman Salviati, on the basis of experiments,
argued for the claim that bodies with different densities would fall with
equal speed in a vacuum, that is, that their speed is invariant with respect to
the density of the bodies:

We have already seen that the difference of speed between bodies of differ-
ent specific gravities is most marked in those media which are the most
resistant: thus, in a medium of quicksilver, gold not merely sinks more
rapidly than lead but it is the only substance that will descend at all; all other
metals and stones rise to the surface and float. On the other hand, the
variation of speed in air between balls of gold, lead, copper, porphyry, and
other heavy materials is so slight that in a fall of 100 cubits a ball of gold
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would surely not outstrip one of copper by as much as four fingers. Having
observed this I came to the conclusion that in a medium totally devoid of
resistance all bodies would fall with the same speed. (Galileo 1954, 71–2)

Salviati’s inference becomes problematic only if one already starts out with
the idea that our epistemic access is limited to the actual. Laws of nature
make modal claims that are empirically accessible.
Second, this latter claim is further illustrated by the fact that addition-

ally, some more specific notions of invariance play an explicit role in
physics. Some laws or theories are characterised as Galilei invariant,
Lorentz invariant or Gauge invariant. These concepts point to symmetries
in the systems under investigation, symmetries with respect to certain
classes of transformation. Not every law or theory is Lorentz invariant,
and whether or not the behaviour of systems can be characterised as
Lorentz invariant is an empirical matter. The notion of invariance that is
relevant in these physical discussions is the same as I used previously; that
is, the law equations continue to hold under certain kinds of actual and
counterfactual changes. More specifically, the homogeneity of space, for
instance, is a symmetry in the sense that the laws of classical physics remain
the same under translations in space; all space points are equivalent when it
comes to Newton’s second law or the Schrödinger equation. Absolute
space points turn out to be irrelevant for the dynamics of systems
(Castellani 2003, 429). The same holds for Lorentz transformation, and
so on. Laws are invariant if they stay the same under actual or counterfac-
tual changes. Some of these invariances, namely those listed here, are
constitutive of what is usually considered to be nomological necessity.
Others, such as Lorentz invariance, are additional invariances that laws
may or may not comply with.
A third remark addresses an objection against analysing lawhood or

nomological necessity in terms of invariance relations. Psillos criticises
Woodward’s account for being circular because the notion of invariance
presupposes that of a law. Lawhood, Psillos argues, should thus not be
explicated in terms of invariance. Rather, ‘some laws must be in place
before, based on considerations of invariance, it is established that some
generalization is invariant under some intervention’ (Psillos 2002, 185).
The disagreement concerns the question of whether lawhood or invariance
should be taken to be the fundamental notion. I have argued that we have
good reasons why we should explicate lawhood or nomological necessity in
terms of invariance (rather than the other way around), because we thus
understand the role nomological necessity plays in scientific practice.

34 Laws of Nature and Their Modal Surface Structure

https://doi.org/10.1017/9781009023542.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023542.002


In dealing with the circularity objection, it is important to distinguish
an ontological issue and an epistemological issue. The ontological issue
concerns the question of what the invariance of a law equation with
respect to, say, the behaviour of other systems consists in. The simple
answer is that the equation continues to hold when there are actual or
counterfactual changes in the behaviour of other systems. There is no
need to refer to laws of nature when it comes to explicating what invari-
ance consists in.
The epistemological issue is a different issue. It concerns the question of

how wemight know that a certain invariance claim is true: how we come to
know that a certain law equation would continue to hold given changes in
the behaviour of other systems, or – to use Psillos’s phrase – how the
invariance claim is ‘established’. In order to decide whether or not a certain
generalisation is invariant with respect to certain changes we may indeed
rely on laws. But that is no problem for the invariance account as long as
the ontological and epistemological issues are kept apart. Thus, laws may
play a role in establishing invariance claims, but that does not imply that
the ontological characterisation of invariance presupposes the notion of
a law.15

1.3.4 External Generalisations and Modal Surface Structure

Let me now turn briefly to external generalisations and the question of
whether their role in scientific practice requires additional modal assump-
tions. In Section 1.1.3 I argued that the explanation of why the stone has
a certain velocity presupposes that the system in question, the free-falling
stone, falls under Galileo’s law. The truth of the external generalisation,
I argued, is a presupposition for the internal generalisations doing their
explanatory work. Furthermore, in the case of our example of standard
explanation, all that is required is that the external generalisation is true.
Thus, standard explanation, which is of course only one aspect of scientific
practice, does not commit us to postulating modal structure, let alone
additional modal structure.
The case is different when it comes to prediction or manipulation. Let us

go back to our preliminary law statement:

(A) ‘All systems of a certain kind K behave according to Σ.’

15 Woodward mixes these two issues up by defining invariance in terms of interventions (see, e.g.,
Woodward 2003, chapter 6).
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As already indicated, in predicting, manipulating or constructing systems
we rely on laws, and this reliance can be explicated in terms of the
invariance of the law equation with respect to actual or counterfactual
changes in the behaviour of other systems in the universe. However, the
fact that the law equation continues to characterise the behaviour of the
system under consideration presupposes that the external generalisation
(A) is invariant with respect to the same changes. No matter what other
systems are doing, all systems of kind K will continue to behave according
to Σ. So, when it comes to manipulation or prediction, external general-
isations commit us not only to their truth but also to their invariance with
respect to the behaviour of other systems in the universe. There is,
however, no evidence that we are committed to any new kind of invariance
relations that we have not encountered in our discussion of internal
generalisations.
Let me close this section on external generalisations by giving a diagnosis

as to why the modal surface structure that is delineated by law statements
has often been ignored. Two facts seem to me to be relevant here. First, the
reconstruction of law statements along the lines of the ‘All ravens are black’
paradigm has encouraged us to overlook the role of internal generalisa-
tions. Second, when scientific practice was analysed at all, it has often been
assumed that description and explanation is all there is. As I have argued,
we can understand the role of external generalisations with respect to
description and explanation without making modal assumptions, since
the truth of the external generalisation suffices in these cases. It is only
when we consider other scientific practices, such as predicting or manipu-
lating, or the role internal generalisations play in these practices, that we are
forced to consider the modal surface structure of law statements.

1.4 Conclusion

The purpose of Section 1.3 to was to examine the modal surface structure of
laws, that is, those modal assumptions that best account for how we make
use of external and internal generalisations in scientific practice. I argued
that in order to understand not just our explanatory practice but also other
practices that involve a reliance on laws, such as predicting, manipulating
or constructing systems, we have to make two assumptions. First, we have
to assume that law statements attribute a space of possible states to systems.
Second, we must assume that both the law equations and the external
generalisations are invariant with respect to certain actual and counterfac-
tual changes. The law equation is invariant with respect to (i) a range of
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initial conditions and (ii) features of the system that do not figure in the law
equation. In addition, both the law equation and the external generalisa-
tion are invariant with respect to changes of the behaviour of other systems
in the universe. These empirically accessible invariance claims account for
what is usually taken to be the law’s nomological necessity.
As already mentioned, it is important that invariance claims are modal

claims. It is claimed not only that law equations are invariant with respect
to actual changes but also that they are invariant with respect to counter-
factual changes. Some may feel that for this reason we have made little
progress. Nomological necessity, they will argue, is mysterious precisely
because it is a modal notion; invariance is a modal notion too, so we are left
with a mystery. I think this is wrong. Being able to characterise the modal
structure that comes with law statements in more detail and explaining
how invariance claims are empirically accessible does seem to me to
constitute progress.
Finally, as mentioned before, I am exclusively concerned with the

modal surface structure of laws, which the notion of invariance helps to
characterise. One may then still ask ‘What underpins these invariances?’
(Bird 2007, 5). That may be an interesting question, but it is one that
transcends the approach taken in this book. As I said at the beginning,
I want to confine myself to metaphysical claims that can be established via
an inference to the best explanation of why we have the scientific practice
we have. Assuming that laws are invariant in various respects does exactly
that. Invariance relations, as I will show in the following chapters, can
account for (almost) all the natural modalities we encounter in scientific
practice. A further analysis of invariance in terms of subjunctive facts
(Lange), essences (Bird), dispositional modality (Mumford) or the
Humean mosaic does not do any extra work in explaining scientific
practice. A minimal metaphysics of scientific practice should thus abstain
from such hypotheses of how natural modality is to be further explained
or reduced. Those who do conduct such investigations have to appeal to
intuitions about the governing of laws, intuitions about the superveni-
ence or non-supervenience of laws on the underlying Humean mosaic, or
intuitions about quiddities, or to a preference for desert landscapes. It is
hard to see an argument as to why such intuitions or preferences should
be considered to be truth conducive. Thus, I am quite happy with the
modal surface structure for which I have argued. ‘Those who go beneath
the surface do so at their peril’ (Oscar Wilde).
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