
2

Radial Sound Speeds

In this chapter we will discuss geometric inverse problems in a ball with radial
sound speed. The fact that the sound speed is radial is a strong symmetry
condition, which allows one to determine the behaviour of geodesics and
solve related inverse problems quite explicitly. We will restrict our attention
to the two-dimensional case, since the general case of a ball with radial sound
speed in R

n reduces to this by looking at two-dimensional slices through
the origin.

We first discuss geodesics of a radial sound speed satisfying the important
Herglotz condition, using the Hamiltonian approach to geodesics and Cartesian
coordinates. We then prove the classical result of Herglotz (1907) that travel
times uniquely determine a radial sound speed of this type. Next we switch to
polar coordinates and study geodesics of a rotationally symmetric metric, and
prove that the geodesic X-ray transform is injective. The main point is that the
geodesic equation can be integrated explicitly by quadrature, and a function
can be determined from its integrals over geodesics using suitable changes
of coordinates and inverting Abel-type transforms. Finally, we give examples
of manifolds (surfaces of revolution) where the geodesic X-ray transform is
injective or is not injective.

2.1 Geodesics of a Radial Sound Speed

The fact that the geodesics of a radial sound speed can be explicitly determined
is related to the existence of multiple conserved quantities in the Hamiltonian
approach to geodesics. We first recall this approach.

25
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26 Radial Sound Speeds

2.1.1 Geodesics as a Hamilton Flow

Let M ⊂ R
n, let x be the standard Cartesian coordinates in R

n, and let
g = (gjk(x))

n
j,k=1 be a Riemannian metric on M . A curve x(t) =

(x1(t), . . . ,xn(t)) is a geodesic if and only if it satisfies the geodesic equations

ẍl(t) + �l
jk(x(t))ẋ

j (t)ẋk(t) = 0, (2.1)

where �l
jk are the Christoffel symbols given by

�l
jk = 1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

Recall that (glm) is the inverse matrix of (gjk), and that we are using the
Einstein summation convention where a repeated index in upper and lower
position is summed. We will assume that all geodesics have unit speed, i.e.

|ẋ(t)|g =
√
gjk(x(t))ẋj (t)ẋk(t) = 1.

In this section we will also use the Euclidean length of vectors x ∈ R
n,

written as

|x|e =
√
x2

1 + · · · + x2
n .

We recall that the geodesic equations are often derived by using the
Lagrangian approach to classical mechanics: they arise as the Euler–Lagrange
equations that are satisfied by critical points of the length functional L(x) =∫ b

a
|ẋ(t)|g dt . We will now switch to the Hamiltonian approach, which con-

siders the position x(t) and momentum ξ(t), where ξ(t) is the covector
corresponding to ẋ(t), simultaneously.

Writing

ξj (t) := gjk(x(t))ẋ
k(t), f (x,ξ) :=

√
gjk(x)ξj ξk,

a short computation shows that the geodesic equations (for unit speed
geodesics) are equivalent with the Hamilton equations{

ẋ(t) = ∇ξ f (x(t),ξ(t)),

ξ̇ (t) = −∇xf (x(t),ξ(t)).
(2.2)

Here f (x,ξ) = |ξ |g (speed, or square root of kinetic energy) is called the
Hamilton function, and it is defined on the cotangent space

T ∗M = {(x,ξ) ; x ∈ M, ξ ∈ R
n} = M × R

n ⊂ R
2n.

The operators ∇x and ∇ξ are the standard (Euclidean) gradient operators with
respect to the x and ξ variables.
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2.1 Geodesics of a Radial Sound Speed 27

Exercise 2.1.1 Show that (2.1) is equivalent with (2.2).

Writing γ (t) = (x(t),ξ(t)) and using the Hamilton vector field Hf on T ∗M ,
defined by

Hf := ∇ξ f · ∇x − ∇xf · ∇ξ = (∇ξ f , − ∇xf ),

we may write the Hamilton equations as

γ̇ (t) = Hf (γ (t)).

Definition 2.1.2 A function u = u(x,ξ) is called a conserved quantity or a
first integral if it is constant along the Hamilton flow, i.e. t 
→ u(x(t),ξ(t)) is
constant for any curve (x(t),ξ(t)) solving (2.2).

Now (2.2) implies that

u is conserved,

⇐⇒ d

dt
u(x(t),ξ(t)) = 0,

⇐⇒ Hf u(x(t),ξ(t)) = 0.

Since

Hf f = (∇ξ f , − ∇xf ) · (∇xf ,∇ξ f ) = 0,

the Hamilton function f (speed) is always conserved.
Let now M ⊂ R

2, and consider a metric of the form

gjk(x) = c(x)−2δjk,

where c ∈ C∞(M) is positive. Then f (x,ξ) = c(x)|ξ |e and, writing ξ̂ = ξ
|ξ |e ,

Hf = c(x)ξ̂ · ∇x − |ξ |e∇xc(x) · ∇ξ .

Define the angular momentum

L(x,ξ) = ξ · x⊥, x⊥ = (−x2,x1).

When is L conserved? We compute

HfL = c(x)ξ̂ · (−ξ⊥) − |ξ |e∇xc(x) · x⊥ = −|ξ |e∇xc(x) · x⊥.

Thus HfL = 0 if and only if ∇c(x) ·x⊥ = 0, which is equivalent with the fact
that c is radial.

Lemma 2.1.3 The angular momentum L is conserved if and only if

c = c(r), r = |x|e.
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28 Radial Sound Speeds

If M ⊂ R
2 and c(x) is radial, then the Hamilton flow on T ∗M (a four-

dimensional manifold) has two independent conserved quantities (the speed f

and angular momentum L). One says that the flow is completely integrable,
which implies that the geodesic equations can be solved quite explicitly by
quadrature using the conserved quantities f and L. See e.g. (Taylor, 2011,
chapter 1) for more details on these facts.

2.1.2 Geodesics of a Radial Sound Speed

We will now begin to analyze geodesics in this setting, following the presenta-
tion in Bal (2019). Let M = D \ {0} where D is the unit disk in R

2. Assume
that

gjk(x) = c(r)−2δjk, r = |x|e,

where c ∈ C∞([0,1]). Note that the origin is a special point and gjk(x) is not
necessarily smooth there; hence we will consider geodesics only away from
the origin.

We write

r(t) = |x(t)|e, x̂ = x

|x|e .

Then f (x,ξ) = c(r)|ξ |e and the Hamilton equations (2.2) become{
ẋ(t) = c(r(t))ξ̂ (t),

ξ̇ (t) = −|ξ(t)|ec′(r(t))x̂(t).
(2.3)

Consider geodesics starting on ∂D, i.e. r(0) = 1, and write

ξ(0) = 1

c(1)

(
−
√

1 − p2x(0) + px(0)⊥
)
, 0 < p < 1. (2.4)

Note that ξ(0) points inward, and hence also ẋ(0) = c(1)2ξ(0) points inward.
The normalization yields |ẋ(0)|g = |ξ(0)|g = 1, so that the geodesic has unit
speed.

We wish to study how deep the geodesic goes into M , which boils down to
understanding r(t). Computing the derivative of r(t) gives

ṙ = x · ẋ
|x|e = c(r)

r|ξ |e (x · ξ). (2.5)

In particular, we see that ṙ(t) has the same sign as x(t)·ξ(t). The latter quantity
can be analyzed by (2.3). We compute
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2.1 Geodesics of a Radial Sound Speed 29

d

dt
(x · ξ) = ẋ · ξ + x · ξ̇ = |ξ |e(c − rc′(r))

= c2|ξ |e d

dr

(
r

c(r)

) ∣∣∣
r=r(t)

. (2.6)

Next we make use of the conserved quantities:

f conserved �⇒ c(r(t))|ξ(t)|e = 1 �⇒ |ξ(t)|e = 1

c(r(t))
, (2.7)

L conserved �⇒ ξ(t) · x(t)⊥ = ξ(0) · x(0)⊥. (2.8)

Then (2.6) becomes

d

dt
(x · ξ) = c(r)

d

dr

(
r

c(r)

) ∣∣∣
r=r(t)

. (2.9)

Remark 2.1.4 We note that one can derive a useful ordinary differential
equation (ODE) for r(t). By (2.5) one has ṙ = c(x̂ · ξ̂ ). Decompose ξ̂ =
(ξ̂ · x̂)x̂ + (ξ̂ · x̂⊥)x̂⊥. Noting that |x̂ · ξ̂ | =

√
1 − (ξ̂ · x̂⊥)2 =

√
1 −

(
pc(r)
rc(1)

)2

by (2.7), (2.8), and (2.4), we see that r(t) solves the equation

ṙ = ±c(r)

√
1 −

(
pc(r)

rc(1)

)2

, ± ξ · x̂ ≥ 0. (2.10)

This is an autonomous ODE for r(t) (all other dependence on t has been
eliminated).

To simplify the behaviour of geodesics we would like that ṙ(t) has a unique
zero at some t = tp, is negative for t < tp, and is positive for t > tp. This
means that geodesics curve back toward the boundary after they reach their
deepest point. Since ṙ(t) has the same sign as x(t) · ξ(t), the identity (2.9)
shows that this is guaranteed by the following important condition.

Definition 2.1.5 We say that a radial sound speed c ∈ C∞([0,1]) satisfies the
Herglotz condition if

d

dr

(
r

c(r)

)
> 0, r ∈ [0,1]. (2.11)

Assuming this condition we can describe the behaviour of geodesics.

Theorem 2.1.6 Assume that c ∈ C∞([0,1]) satisfies the Herglotz condition.
Let 0 < p < 1, and consider the geodesic with x(0) ∈ ∂D and ξ(0) given by
(2.4). There is a unique time tp > 0 such that

ṙ(t) < 0 for 0 ≤ t < tp, ṙ(tp) = 0, ṙ(t) > 0 for tp < t ≤ 2tp.
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30 Radial Sound Speeds

One has 0 < r(t) < 1 for 0 < t < 2tp and r(0) = r(2tp) = 1. Moreover, the
geodesic is symmetric with respect to t = tp so that x(tp + s) = Rp(x(tp − s))

where Rp is reflection about x̂(tp).

Proof By (2.4) one has

x(0) · ξ(0) = −c(1)−1
√

1 − p2 < 0, (2.12)

and (2.5) implies that ṙ(0) < 0. Thus x(t) stays in D \ {0} at least for a short
time. Note also that by (2.7) (conservation of f ) and the positivity of c, one
has |ξ(t)|e ≥ ε0 > 0 whenever the geodesic is defined.

Let T be the maximal time of existence of the geodesic x(t), i.e.

T = sup
{
t̄ > 0 ; x|[0,t̄ ) stays in D \ {0}}.

There are two ways that x(t) can exit D \ {0}: either x(t) can go to 0,
or x(t) can go to ∂D. Let us show that the first case cannot happen. If
x|[0,t̄ ) stays in D \ {0} and x(tj ) → 0 as tj → t̄ , then (2.8) implies that
ξ(0) · x(0)⊥ = 0. But (2.4) gives that ξ(0) · x(0)⊥ = p/c(1), which is
impossible since we assumed that 0 < p < 1. This shows that either T = ∞,
or T is finite and x(T ) ∈ ∂D.

Now we go back to (2.9) and note that the positivity of c and the Herglotz
condition (2.11) imply that

d

dt
(x(t) · ξ(t)) ≥ ε0 > 0, t ∈ [0,T ).

Thus x(t) · ξ(t) is strictly increasing. By (2.12) one has x(0) · ξ(0) < 0 and

x(t) · ξ(t) ≥ x(0) · ξ(0) + ε0t, t ∈ [0,T ). (2.13)

Now if x(t) · ξ(t) were negative for t ∈ [0,T ), then by (2.5) r(t) would be
strictly decreasing for t ∈ [0,T ), and the maximal time would be T = ∞
since x(t) could not go to ∂D. This is a contradiction with (2.13), hence there
must be a unique tp > 0 with x(tp) · ξ(tp) = 0. By (2.5) one has ṙ(t) < 0
for t < tp, ṙ(tp) = 0, and also ṙ(t) > 0 for t > tp since x(t) · ξ(t) is strictly
increasing.

The other claims follow if we can show the symmetry x(tp+s) = Rp(x(tp−
s)). Since everything is rotationally symmetric, we may assume that x̂(tp) =
(1,0) and Rp(x1,x2) = (x1,−x2). Define η(s) = (x(tp + s),ξ(tp + s)) and
ζ(s) = (Rp(x(tp − s)),−Rp(ξ(tp − s))). Then both η(s) and ζ(s) satisfy
the Hamilton equations (2.3) with the same initial data when s = 0 (since
x(tp) · ξ(tp) = 0), and the symmetry condition follows by uniqueness for
ODEs.
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2.2 Travel Time Tomography 31

2.2 Travel Time Tomography

We will now consider a variant of the travel time tomography problem
discussed in the introduction, and prove the classical result of Herglotz (1907)
showing that travel times uniquely determine a radial sound speed satisfying
the Herglotz condition.

If c ∈ C∞([0,1]) satisfies the Herglotz condition, then by Theorem 2.1.6
the unit speed geodesic starting at x(0) ∈ ∂D having codirection ξ(0) =

1
c(1) (−

√
1 − p2x(0) + px(0)⊥) where 0 < p < 1 returns to ∂D after time

2tp. Note that the travel time 2tp does not depend on the choice of x(0) ∈ ∂D

because of radial symmetry. Thus we may define the travel time function

Tc(p) = 2tp, 0 < p < 1.

Theorem 2.2.1 (Travel time tomography) Assume that c ∈ C∞([0,1]) is
positive and satisfies the Herglotz condition. From the knowledge of the value
c(1) and the travel times

Tc(p), 0 < p < 1,

one can determine c(r) for r ∈ (0,1].

Remark 2.2.2 The problem of determining a radial sound speed from travel
time measurements was known to geophysicists in the early twentieth century.
A mathematical treatment based on inverting Abel integrals was given in
Herglotz (1907) and independently in Bateman (1910), and the problem was
further analyzed in Wiechert and Geiger (1910). In geophysics the approach
based on these ideas goes by the names of Herglotz, Wiechert, and Bateman.

To prove this theorem, we start with the ODE (2.10), which gives that

dr

dt
= c(r)

√
1 −

(
pc(r)

rc(1)

)2

, tp ≤ t ≤ 2tp.

We use this fact and a change of variables to obtain

Tc(p) = 2tp = 2
∫ 2tp

tp

dt = 2
∫ 1

rp

1

c(r)

√
1 −

(
pc(r)
rc(1)

)2
dr, (2.14)

where rp = r(tp). Thus, from the measurements Tc(p) with 0 < p < 1 we
know the integrals (2.14) involving c(r). We wish to recover c(r) from these
integrals.
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32 Radial Sound Speeds

To simplify (2.14), we make the change of variables

u =
(
c(1)r

c(r)

)2

. (2.15)

This is a valid change of variables by the Herglotz condition (2.11). Note that
since ṙ(tp) = 0, the ODE (2.10) shows that rp = r(tp) satisfies

rp

c(rp)
= p

c(1)
.

Hence r = rp corresponds to u = p2. Then Tc(p) becomes

Tc(p) = 2

c(1)

∫ 1

p2

dr

du

u

r

1√
u − p2

du. (2.16)

This is an Abel integral, of the kind encountered in Abel (1826) when
determining the profile of a hill by measuring the time it takes for a particle
with different initial positions to roll down the hill. This work of Abel is
considered to be the first appearance of an integral equation in mathematics.

These Abel integrals can be inverted by the following result, where we
also pay attention to various mapping properties of the Abel transform.
See Gorenflo and Vessella (1991) for a detailed treatment of Abel integral
equations.

Theorem 2.2.3 (Abel transform) Let α < β, and define the Abel transform

Au(x) :=
∫ β

x

1

(y − x)1/2
u(y) dy, α < x ≤ β.

The Abel transform takes L1
loc((α,β]) to itself. Define the space

A((α,β]) :=
{
f ∈ L1

loc((α,β]) ; Af ∈ W
1,1
loc ((α,β])

}
.

The Abel transform is a bijective map between the following spaces:

A : L1
loc((α,β]) → A((α,β]), (2.17)

A : A((α,β]) → {f ∈ W
1,1
loc ((α,β]) ; f (β) = 0}, (2.18)

A : C∞((α,β]) → {(β − x)1/2h(x) ; h ∈ C∞((α,β])}. (2.19)

Given any f ∈ A((α,β]), the equation Au = f has a unique solution u ∈
L1

loc((α,β]) given by the formula

u(y) = − 1

π

d

dy

∫ β

y

f (x)

(x − y)1/2
dx. (2.20)
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If additionally f ∈ W
1,1
loc ((α,β]) with f (β) = 0, one has the alternative

formula

u(y) = − 1

π

∫ β

y

f ′(x)
(x − y)1/2

dx. (2.21)

Remark 2.2.4 Here

L1
loc((α,β]) = {u ; u|[γ,β] ∈ L1([γ,β]) whenever α < γ < β},

and similarly for W
1,1
loc ((α,β]). Recall that in one dimension W 1,1 coincides

with the space of absolutely continuous functions, and hence functions in
W

1,1
loc ((α,β]) can be evaluated pointwise at β.

Proof If α < γ < β, we may use Fubini’s theorem to show that∫ β

γ

|Au(x)| dx ≤
∫ β

γ

∫ β

x

|u(y)|
(y − x)1/2

dy dx =
∫ β

γ

∫ y

γ

|u(y)|
(y − x)1/2

dx dy

= 2
∫ β

γ

(y − γ )1/2|u(y)| dy ≤ 2(β − γ )1/2
∫ β

γ

|u(y)| dy.

This shows that A maps L1
loc((α,β]) to itself. We use the definition of A and

Fubini’s theorem to compute

A2u(z) =
∫ β

z

Au(x)

(x − z)1/2
dx =

∫ β

z

∫ β

x

u(y)

(x − z)1/2(y − x)1/2
dy dx

=
∫ β

z

∫ y

z

u(y)

(x − z)1/2(y − x)1/2
dx dy.

The last quantity may be written as
∫ β

z
k(z,y)u(y) dy where, using the change

of variables x = z + (y − z)w,

k(z,y) =
∫ y

z

1

(x − z)1/2(y − x)1/2
dx =

∫ 1

0

1

w1/2(1 − w)1/2
dw.

Thus k(z,y) is a constant, given by the beta function B( 1
2,

1
2 ) = π . The

constant can be computed directly as follows: changing variables w = 1
2 + 1

2v

and v = sin θ gives∫ 1

0

1

w1/2(1 − w)1/2
dw =

∫ 1

−1

1√
1 − v2

dv =
∫ π/2

−π/2
dθ = π .
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This shows that for any u ∈ L1
loc((α,β]), one has

A2u(z) = π

∫ β

z

u(y) dy. (2.22)

Thus (A(Au))′(z) = −πu(z), so A maps L1
loc((α,β]) into A((α,β]).

We next show that the map (2.17) is bijective. By (2.22), if Au = 0 it follows
that u ≡ 0, so A is injective. Now let f ∈ A((α,β]). Setting u := − 1

π
d
dx

Af ,
we have u ∈ L1

loc((α,β]) and

π

∫ β

z

u(y) dy = Af (z),

since one always has Af (β) = 0. Combining this with (2.22) we get Af =
A(Au), and since A is injective we have Au = f . We have proved that (2.17)
is bijective and that one has the inversion formula (2.20).

Next let f ∈ W
1,1
loc ((α,β]) with f (β) = 0, and integrate by parts to obtain

Af (x) =
∫ β

x

f (y)
d

dy

(
2(y − x)1/2) dy

= −2
∫ β

x

(y − x)1/2f ′(y) dy.

It follows that Af ∈ L1
loc((α,β]) and

(Af )′(x) =
∫ β

x

f ′(y)
(y − x)1/2

dy = A(f ′)(x).

By (2.20) the function u := − 1
π
(Af )′ satisfies Au = f . But now one also has

u = − 1
π
A(f ′), which proves the second inversion formula (2.21). The fact

that (2.18) is a bijective map follows immediately.
Finally, if u ∈ C∞((α,β]) we change variables y = x+ (β−x)s and obtain

Au(x) =
∫ β

x

u(y)

(y − x)1/2
dy = (β − x)1/2

∫ 1

0

u(x + (β − x)s)

s1/2
ds.

Since u is smooth, one has Au(x) = (β − x)1/2h(x) where h ∈ C∞((α,β]).
Conversely, if f (x) = (β − x)1/2h(x) where h ∈ C∞((α,β]), the change of
variables x = y + (β − y)s gives∫ β

y

f (x)

(x − y)1/2
dx = (β − y)

∫ 1

0

(1 − s)1/2h(y + (β − y)s)

s1/2
ds.

If u is defined by (2.20), we see that u ∈ C∞((α,β]) and u solves Au = f .
Thus (2.19) is a bijective map.
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We now return to (2.16). Since the value c(1) is known, using (2.16) and
Theorem 2.2.3 we can determine the function f (u) := dr

du
u

r(u)
from the

knowledge of Tc(p) for 0 < p < 1 . We rewrite this as d
du

log r(u) = f (u)
u

,
which shows that we can recover the function

r(u) = exp

(
−
∫ 1

u

f (v)

v
dv

)
.

By taking the inverse function, we can determine u(r). By (2.15), we have
determined the function c(r) = c(1)r/

√
u(r). This completes the proof of

Theorem 2.2.1.

Remark 2.2.5 If we assume that the sound speed extends smoothly to M :=
D, then Theorem 2.2.1 can be reformulated using the notation of Chapter 3
as follows: if g1 and g2 are two Riemannian metrics on M corresponding to
radial sound speeds satisfying the Herglotz condition, if g1|∂M = g2|∂M and
if τg1 |∂+SM = τg2 |∂+SM (the travel times of maximal geodesics for g1 and g2

agree), then g1 = g2.
In the boundary rigidity problem, one considers measurements given by

the boundary distance function dg|∂M×∂M instead of the travel time function
τg . It follows from equation (11.2) that if dg1 |∂M×∂M = dg2 |∂M×∂M and the
boundary is strictly convex, then g1|∂M = g2|∂M . Moreover, if the manifolds
are simple then by Proposition 11.3.2 one has τg1 |∂+SM = τg2 |∂+SM . Thus, in
the setting of simple metrics, Theorem 2.2.1 also solves the boundary rigidity
problem for radial sound speeds.

Remark 2.2.6 Theorem 2.2.1 assumes that c(1), i.e. g|∂M , is known. Often
one can determine g|∂M by looking at short geodesics. However, in the present
setting one gets something slightly different. In (2.16), write f (u) = dr

du
u

r(u)

and note that f is smooth in [p2,1]. The change of variables u = p2+(1−p2)s

yields ∫ 1

p2

f (u)√
u − p2

du = (
1 − p2)1/2

∫ 1

0

f
(
p2 + (1 − p2)s

)
s1/2

ds.

Thus we obtain

lim
p→1

Tc(p)√
1 − p2

= 4f (1)

c(1)
.

From (2.15) we see that du
dr

= c(1)2
(

2r
c(r)2 − 2r2c′(r)

c(r)3

)
. This implies that

f (1) = dr
du

(1) = (2 − 2c′(1)
c(1) )−1 = c(1)

2(c(1)−c′(1)) . Hence, by looking at travel
times of short geodesics, one recovers the quantity c(1) − c′(1) from Tc(p).
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36 Radial Sound Speeds

2.3 Geodesics of a Rotationally Symmetric Metric

For the rest of this chapter, it will be convenient to switch from Cartesian
coordinates (x1,x2) to polar coordinates (r,θ), where x = (r cos θ,r sin θ).
Recall that the Euclidean metric g = dx2

1 + dx2
2 looks like g = dr2 + r2 dθ2

in polar coordinates. Hence the metric g = c(r)−2(dx2
1 + dx2

2) with radial
sound speed c(r) becomes

g = c(r)−2 dr2 + (r/c(r))2 dθ2. (2.23)

We will work in the region M = {(r,θ) ; r0 < r ≤ r1} where r0 < r1 (note
that r0 is not necessarily required to be positive), and consider metrics of the
form

g = a(r)2 dr2 + b(r)2 dθ2, (2.24)

where a,b ∈ C∞([r0,r1]) are positive. Clearly this includes metrics (2.23)
with radial sound speed, with a(r) = 1/c(r) and b(r) = r/c(r). However, the
two forms turn out to be equivalent:

Exercise 2.3.1 Show that a metric of the form (2.24) can be put in the form
(2.23) by a change of variables.

Working with the form (2.24) will be useful in view of the following
example.

Example 2.3.2 (Surfaces of revolution) Let r be the z-coordinate in R
3, and

let h : [r0,r1] → R be a smooth positive function. Let S be the surface of
revolution obtained by rotating the graph of r 
→ h(r) about the z-axis. The
surface S is given by S = {q(r,θ) ; r ∈ (r0,r1], θ ∈ [0,2π ]} where

q(r,θ) = (h(r) cos θ,h(r) sin θ,r).

Then S has tangent vectors

∂r = (h′(r) cos θ,h′(r) sin θ,1),

∂θ = (−h(r) sin θ,h(r) cos θ,0).

Equip S with the metric g induced by the Euclidean metric in R
3. Since ∂r ·∂r =

1 + h′(r)2, ∂r · ∂θ = 0 and ∂θ · ∂θ = h(r)2, one has

g = (1 + h′(r)2) dr2 + h(r)2 dθ2.

Thus, surfaces of revolution have metrics of the form (2.24), where a(r) =√
1 + h′(r)2 and b(r) = h(r).

The geodesic equations for the metric (2.24) can be determined by comput-
ing the Christoffel symbols

https://doi.org/10.1017/9781009039901.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.005
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�l
jk = 1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

A direct computation shows that

�1
11 = ∂ra/a, �1

12 = �1
21 = 0, �1

22 = −b∂rb/a
2,

�2
11 = 0, �2

12 = �2
21 = ∂rb/b, �2

22 = 0.

Thus the geodesic equations are

r̈ + ∂ra

a
(ṙ)2 − b∂rb

a2
(θ̇)2 = 0, (2.25)

θ̈ + 2∂rb

b
ṙθ̇ = 0. (2.26)

The conserved quantities (speed and angular momentum) corresponding to
(2.7) and (2.8) are given as follows:

(a(r)ṙ)2 + (b(r)θ̇)2 is conserved, (2.27)

b(r)2θ̇ is conserved. (2.28)

In fact, the first quantity is conserved since geodesics have constant speed, and
the fact that the second quantity is conserved follows directly by taking its
t-derivative and using the second geodesic equation.

As in Theorem 2.1.6, we would like that when a geodesic reaches its deepest
point where ṙ = 0, it turns back toward the surface (i.e. r̈ > 0). Now (2.25)
implies that

ṙ = 0 �⇒ r̈ = b∂rb

a2
(θ̇)2.

Thus, when ṙ = 0, one has r̈ > 0 if and only if b′ > 0. This is the analogue of
the Herglotz condition. For a radial sound speed as in (2.23), one has b(r) =
r/c(r) and the condition b′ > 0 is equivalent with d

dr

(
r

c(r)

)
> 0.

Definition 2.3.3 A metric g = a(r)2 dr2 + b(r)2 dθ2, where a,b ∈
C∞([r0,r1]) are positive, satisfies the Herglotz condition if

b′(r) > 0, r ∈ [r0,r1].

The following result is the analogue of Theorem 2.1.6.

Theorem 2.3.4 (Geodesics) Let g satisfy the Herglotz condition as in
Definition 2.3.3. Let (r(t),θ(t)) be a unit speed geodesic with r(0) = r1

and ṙ(0) < 0. There are two types of geodesics: either r(t) strictly decreases
to {r = r0} in finite time, or the geodesic stays in M and goes back to {r = r1}

https://doi.org/10.1017/9781009039901.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.005


38 Radial Sound Speeds

in finite time. Geodesics of the second type have a unique closest point (ρ,α) to
the origin, and they consist of two symmetric branches where first r(t) strictly
decreases from r1 to ρ, and then r(t) strictly increases from ρ to r1. Moreover,
for any (ρ,α) ∈ M there is a unique such geodesic γρ,α(t) = (r(t),θ(t)) with
θ̇ (0) > 0, and it satisfies

ṙ = ∓ 1

a(r)b(r)

√
b(r)2 − b(ρ)2, (2.29)

θ(t) = α ∓ b(ρ)

∫ r(t)

ρ

a(r)

b(r)

1√
b(r)2 − b(ρ)2

dr, (2.30)

where − corresponds to the first branch where r(t) decreases, and + corre-
sponds to the second branch where r(t) increases.

Proof Since the geodesic has unit speed, (2.27) implies that

(a(r)ṙ)2 + (b(r)θ̇)2 = 1. (2.31)

Moreover, (2.28) implies that

b(r)2θ̇ = p (2.32)

for some constant p. Combining the (2.31) and (2.32) gives that (a(r)ṙ)2 +
(p/b(r))2 = 1, and thus

(a(r)ṙ)2 = 1 − p2

b(r)2
. (2.33)

Let I be the maximal interval of existence of the geodesic (r(t),θ(t)) in
M , so I is of the form [0,T ), [0,T ], or [0,∞) for some T > 0. Now, since
ṙ(0) < 0, there are two possible cases: either ṙ(t) < 0 for all t ∈ I , or ṙ(t̄ ) = 0
for some t̄ ∈ I . Assume that we are in the first case. Taking the t-derivative in
(2.33) gives

2a(r)ṙ
d

dt
(a(r)ṙ) = 2p2b(r)−3b′(r)ṙ, t ∈ I .

Since ṙ(t) < 0 for all t ∈ I , we may divide by ṙ and obtain

d

dt
(a(r)ṙ) = p2b(r)−3b′(r)

a(r)
, t ∈ I .

Using the Herglotz condition we have b′(r) > 0 for all r ∈ [r0,r1]. Thus there
are ε0 > 0 and c0 ∈ R so that

a(r)ṙ ≥ c0 + ε0t, t ∈ I . (2.34)
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Now if T = ∞ one would get ṙ(t̄ ) = 0 for some t̄ ∈ I , which is a
contradiction. Hence in the first case where ṙ(t) < 0 for all t ∈ I , the geodesic
must reach {r = r0} in finite time and r(t) is strictly decreasing.

Assume now that we are in the second case where ṙ(t) < 0 for 0 ≤ t < t̄

and ṙ(t̄ ) = 0 for some t̄ ∈ I . Let ρ = r(t̄) and α = θ(t̄). Since both η(s) =
(r(t̄ + s),θ(t̄ + s)) and ζ(s) = (r(t̄ − s),2α − θ(t̄ − s)) solve the geodesic
equations with the same initial data when s = 0, the geodesic has two branches
that are symmetric with respect to t = t̄ . Note that we must have p = ±b(ρ)

upon evaluating (2.33) at t = t̄ . If additionally θ̇ (0) > 0 then by (2.32) one
has p > 0, so in fact p = b(ρ).

Moreover, given any (ρ,α) ∈ M , we may consider the geodesic with
(r(0),θ(0)) = (ρ,α) and (ṙ(0),θ̇ (0)) = (0,1/b(ρ)) where the value for
θ̇ (0) is obtained from (2.31) (the geodesic must have unit speed). The earlier
arguments show that this geodesic has two symmetric branches, and reaches
{r = r1} in finite time by (2.34). The required geodesic γρ,α is obtained from
(r(t),θ(t)) after a translation in t .

The equation for ṙ(t) follows from (2.33), where p = b(ρ). Finally, (2.32)
with p = b(ρ) gives

θ(t ′) = α + b(ρ)

∫ t ′

t̄

1

b(r(t))2
dt .

We change variables t = t (r) and use that (2.29) gives

dt

dr
(r) = 1

ṙ(t (r))
= ∓ a(r)b(r)√

b(r)2 − b(ρ)2
.

This proves (2.30).

2.4 Geodesic X-ray Transform

In this section we prove the result of Romanov (1967) (see also Romanov
(1987); Sharafutdinov (1997)) showing invertibility of the geodesic X-ray
transform for rotationally symmetric metrics satisfying the Herglotz condition.
Let

g = a(r)2 dr2 + b(r)2 dθ2

be a metric in M = {(r,θ) ; r0 < r ≤ r1} satisfying the Herglotz condition
b′(r) > 0 for r ∈ [r0,r1]. For f ∈ C∞(M), we wish to study the problem of
recovering f from its integrals over maximal geodesics starting from {r = r1}.
By Theorem 2.3.4 there are two types of geodesics: those that go to {r = r0}
in finite time, and those that never reach {r = r0} and curve back to {r = r1}
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in finite time. We only consider integrals of f over geodesics of the second
type. This corresponds to having measurements only on {r = r1} and not on
{r = r0}, which is relevant for instance in seismic imaging where {r = r1}
corresponds to the surface of the Earth.

By Theorem 2.3.4, for any (ρ,α) ∈ M there is a unique unit speed geodesic
γρ,α(t) joining two points of {r = r1} and having (ρ,α) as its closest point to
the origin. Denote by τ(ρ,α) the length of this geodesic. Given f ∈ C∞(M),
we define its geodesic X-ray transform by

If (ρ,α) =
∫ τ(ρ,α)

0
f (γρ,α(t)) dt, (ρ,α) ∈ M .

The main result in this section shows that under the Herglotz condition the
geodesic X-ray transform is injective, i.e. f is uniquely determined by If .

Theorem 2.4.1 (Injectivity) Let g satisfy the Herglotz condition in Definition
2.3.3. If f ∈ C∞(M) satisfies If (ρ,α) = 0 for all (ρ,α) ∈ M , then f = 0.

To prove the theorem, we first note that by Theorem 2.3.4 one has

γρ,α(t) = (r(t),α ∓ ψ(ρ,r(t))),

where

ψ(ρ,r(t)) := b(ρ)

∫ r(t)

ρ

a(r)

b(r)

1√
b(r)2 − b(ρ)2

dr . (2.35)

Moreover,
dr

dt
= ∓ 1

a(r)b(r)

√
b(r)2 − b(ρ)2.

Here the sign − corresponds to the first branch of the geodesic where r(t)

decreases from r1 to ρ, and + corresponds to the second branch where r(t)

increases.
Changing variables t = t (r), we have

If (ρ,α) =
∫ τ(ρ,α)

0
f (r(t),θ(t)) dt

=
∫ 1

2 τ(ρ,α)

0
f (r(t),α − ψ(ρ,r(t))) dt

+
∫ τ(ρ,α)

1
2 τ(ρ,α)

f (r(t),α + ψ(ρ,r(t))) dt

=
∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f (r,α − ψ(ρ,r)) dr

+
∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f (r,α + ψ(ρ,r)) dr . (2.36)
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2.4 Geodesic X-ray Transform 41

Assume for the moment that f is radial, f = f (r). This is analogous to the
result in Theorem 2.2.1 of determining a radial sound speed c(r) from travel
times, and the proof will use a similar method. If f = f (r), we obtain

If (ρ,α) = 2
∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f (r) dr . (2.37)

We change variables

s = b(r)2. (2.38)

This is a valid change of variables since b(r) is strictly increasing by the
Herglotz condition. One has

If (ρ,α) = 2
∫ b(r1)

2

b(ρ)2

a(r(s))b(r(s))r ′(s)
(s − b(ρ)2)1/2

f (r(s)) ds.

This is an Abel transform as in Theorem 2.2.3, where x corresponds to b(ρ)2.
If If (ρ,α) = 0 for r0 < ρ < r1, it follows from Theorem 2.2.3 that

a(r(s))b(r(s))r ′(s)f (r(s)) = 0, b(r0)
2 < s < b(r1)

2.

Since a, b, and r ′ are positive, we get f (r(s)) = 0 for all s and thus f (r) = 0
for r0 < r < r1 as required.

We next consider the general case where f = f (r,θ) ∈ C∞(M). For any
fixed r , the function f (r, · ) is a smooth 2π-periodic function in R, and it has
the Fourier series

f (r,θ) =
∞∑

k=−∞
fk(r)e

ikθ . (2.39)

Here the Fourier coefficients fk(r) = 1
2π

∫ π

−π
f (r,θ)e−ikθ dθ are smooth

functions in (r0,r1], and the Fourier series converges absolutely and uniformly
in {r̄ ≤ r ≤ r1} whenever r0 < r̄ < r1.

Inserting (2.39) in (2.36), we have

If (ρ,α) =
∞∑

k=−∞

[∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

fk(r)2 cos(kψ(ρ,r)) dr

]
eikα .

Denote the expression in brackets by Akfk(ρ). Thus, if If (ρ,α) = 0 for
(ρ,α) ∈ M , then the Fourier coefficients Akfk(ρ) vanish for each k and for
r0 < ρ < r1. It remains to show that each generalized Abel transform Ak is
injective. Note that if k = 0, then A0 is exactly the Abel transform in (2.37)
and this was already shown to be injective.

For k �= 0, we make the same change of variables as in (2.38) and write

gk(s) = 2a(r(s))b(r(s))r ′(s)fk(r(s)).
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Then Akfk(ρ) = Tkgk(b(ρ)
2), where

Tkgk(x) =
∫ b(r1)

2

x

Kk(x,s)

(s − x)1/2
gk(s) ds,

where x = x(ρ) = b(ρ)2 takes values in the range b(r0)
2 < x ≤ b(r1)

2, and

Kk(x,s) = cos(kψ(ρ(x),r(s))).

Since a, b, and r ′ are positive, the injectivity of Ak is equivalent with the
injectivity of Tk .

We now record some properties of the functions Kk .

Lemma 2.4.2 For any k ∈ Z, Kk(x,s) is smooth in {b(r0)
2 ≤ x ≤ s ≤ b(r1)

2}
and satisfies Kk(x,x) = 1 for all x.

Proof Changing variables s = b(r)2, we have

ψ(ρ,r) = b(ρ)

∫ b(r)2

b(ρ)2

q(s)

(s − b(ρ)2)1/2
ds,

where q(s) = a(r(s))r ′(s)
b(r(s))

is smooth. We further make another change of vari-

ables s = b(ρ)2 + (b(r)2 − b(ρ)2)t to obtain that

ψ(ρ,r) = (
b(r)2 − b(ρ)2)1/2

G(ρ,r),

where

G(ρ,r) = b(ρ)

∫ 1

0

q
(
b(ρ)2 + (b(r)2 − b(ρ)2)t

)
t1/2

dt .

Here G is smooth since q and b are smooth. Using that cos x = η(x2)

where η(t) is smooth on R (this can be seen by looking at the Taylor
series of cos x), it follows that Kk(x,s) = η(k2ψ(ρ(x),r(s))2) is smooth.
Finally, note that x = s corresponds to ρ = r , which shows that Kk(x,x) =
cos(kψ(ρ(x),ρ(x))) = 1.

The equation Tkgk = F is a singular Volterra integral equation of the
first kind (see Gorenflo and Vessella (1991) for a detailed treatment of such
equations). The injectivity of Tk now follows from the next result that extends
Theorem 2.2.3 (which considers the special case K ≡ 1). This concludes the
proof of Theorem 2.4.1.

Theorem 2.4.3 Let K ∈ C1(T ) where T := {(x,t) ; α ≤ x ≤ t ≤ β}, and
assume that K(x,x) = 1 for x ∈ [α,β]. Given any f ∈ A((α,β]), there is a
unique solution u ∈ L1

loc((α,β]) of

https://doi.org/10.1017/9781009039901.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.005
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∫ β

x

K(x,t)

(t − x)1/2
u(t) dt = f (x). (2.40)

Moreover, if K ∈ C∞(T ) and if f (x) = (β − x)1/2h(x) for some h ∈
C∞((α,β]), then u ∈ C∞((α,β]).

Proof We define

H(x,t) := K(x,t) − 1.

Note that H(x,x) = 0 by the assumption on K . The equation (2.40) may be
written as

Au + Bu = f, (2.41)

where Au(x) = ∫ β

x
u(t)

(t−x)1/2 dt is the Abel transform, and

Bu(x) :=
∫ β

x

H(x,t)

(t − x)1/2
u(t) dt .

If B ≡ 0 then (2.41) is a standard Abel integral equation and it can be solved
using Theorem 2.2.3. More generally, we will show that the perturbation B can
be handled by a Volterra iteration.

We first show that B maps any function u ∈ L1
loc((α,β]) into A((α,β]), i.e.

that ABu ∈ W
1,1
loc ((α,β]). We use Fubini’s theorem and the change of variables

s = x + (t − x)r to compute

ABu(x) =
∫ β

x

∫ β

s

H(s,t)

(s − x)1/2(t − s)1/2
u(t) dt ds

=
∫ β

x

∫ t

x

H(s,t)

(s − x)1/2(t − s)1/2
u(t) ds dt

=
∫ β

x

[∫ 1

0

H(x + (t − x)r,t)

r1/2(1 − r)1/2
dr

]
u(t) dt .

Thus ABu(x) = ∫ β

x
G(x,t)u(t) dt where G ∈ C1(T ) since K ∈ C1(T ). It

follows that ABu ∈ W
1,1
loc ((α,β]). By Theorem 2.2.3 we may write

Bu = ARu, u ∈ L1
loc((α,β]),

where Ru = − 1
π

d
dx

ABu. Since H(x,x) = 0 we have G(x,x) = 0, and thus
using the above formula for ABu we have

Ru(x) = − 1

π

∫ β

x

∂xG(x,t)u(t) dt .
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In particular, the integral kernel of R is in C0(T ), and it follows that

|Ru(x)| ≤ C

∫ β

x

|u(t)| dt . (2.42)

Since Bu = ARu, (2.41) is equivalent with

A(u + Ru) = f .

Since f ∈ A((α,β]), one has f = Au0 for some u0 ∈ L1
loc((α,β]) by

Theorem 2.2.3. Because A is injective, (2.41) is further equivalent with the
equation

u + Ru = u0. (2.43)

It is enough to show that (2.43) has a unique solution u ∈ L1
loc((α,β]) for any

u0 ∈ L1
loc((α,β]). For uniqueness, if u + Ru = 0, then (2.42) implies that

|u(x)| ≤ C

∫ β

x

|u(t)| dt .

Gronwall’s inequality implies that u ≡ 0. To prove existence, we iterate the
bound (2.42) that yields

|Rju(x)| ≤ C

∫ β

x

|Rj−1u(t1)| dt1 ≤ · · ·

≤ Cj

∫ β

x

∫ β

t1

· · ·
∫ β

tj−1

|u(tj )| dtj · · · dt1

≤ Cj (β − x)j−1

(j − 1)!
‖u‖L1([x,β]).

Thus, whenever α < γ < β one has

‖Rju‖L1([γ,β]) ≤ (C(β − γ ))j

j !
‖u‖L1([γ,β]). (2.44)

The series

u :=
∞∑
j=0

(−R)ju0

converges in L1
loc((α,β]) by (2.44), and the resulting function u solves (2.43).

We have proved that given any f ∈ A((α,β]), (2.40) has a unique solution
u ∈ L1

loc((α,β]). Let now K ∈ C∞(T ) and f (x) = (β − x)1/2h(x) for
some h ∈ C∞((α,β]). By Theorem 2.2.3 one has f = Au0 for some u0 ∈
C∞((α,β]), and it is enough to show that the solution u of (2.43) is smooth.

https://doi.org/10.1017/9781009039901.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.005
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But if K ∈ C∞(T ) the operator R above has C∞ integral kernel, hence Ru is
smooth, and thus also u = −Ru + u0 is smooth. This concludes the proof of
the theorem.

2.5 Examples and Counterexamples

In this section we give some examples of manifolds where the geodesic X-ray
transform is injective, and some examples where it is not injective. We first
begin with some remarks on the Herglotz condition.

Let g = a(r)2 dr2 + b(r)2 dθ2 be a metric in M = {r0 < r ≤ r1}, where
a,b ∈ C∞([r0,r1]) are positive. We first give a definition.

Definition 2.5.1 The circle {r = r̄} is strictly convex (respectively strictly
concave) as a submanifold of (M,g) if for any geodesic (r(t),θ(t)) with
r(0) = r̄ , ṙ(0) = 0 and θ̇ (0) �= 0, one has r̈(0) > 0 (respectively r̈(0) < 0).

Strict convexity means that any tangential geodesic to the circle {r = r̄}
curves away from this circle toward {r = r1}, with exactly first order contact
with the circle when t = 0. More precisely, we should say that the circle is
strictly convex when viewed from {r = r1} (there is a choice of orientation
involved). Strict convexity is equivalent to the fact that {r = r̄} has positive
definite second fundamental form in (M,g). Conversely, strict concavity
means that tangential geodesics to the circle {r = r̄} have first order contact
and curve toward {r = r0}.
Lemma 2.5.2 Let r0 < r̄ ≤ r1.

(a) {r = r̄} is strictly convex as a submanifold of (M,g) if and only if
b′(r̄) > 0.

(b) The circle t 
→ (r̄,t) is a geodesic of (M,g) if and only if b′(r̄) = 0.
(c) {r = r̄} is strictly concave as a submanifold of (M,g) if and only if

b′(r̄) < 0.

Proof If (r(t),θ(t)) is a geodesic with r(0) = r̄ and ṙ(0) = 0, then by (2.25)

r̈(0) = b(r̄)b′(r̄)
a(r̄)2

(θ̇(0))2. (2.45)

If θ̇ (0) �= 0, then r̈(0) has the same sign as b′(r̄) since b is positive. This
proves parts (a) and (c). For part (b), if b′(r̄) = 0, then t 
→ (r̄,t) satisfies
the geodesic equations (2.25)–(2.26). Conversely, if t 
→ (r̄,t) satisfies the
geodesic equations, then r̈(0) = 0 and (2.45) implies that b∂rb/a

2|r=r̄ = 0.
One must have b′(r̄) = 0.
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Thus, if the Herglotz condition is violated, either b′ = 0 somewhere and
there is a trapped geodesic (one that never reaches the boundary), or b′ < 0
somewhere and tangential geodesics curve toward {r = r0}. We also obtain the
following characterization of the Herglotz condition.

Corollary 2.5.3 The following conditions are equivalent.

(a) The circles {r = r̄} are strictly convex for r0 < r̄ ≤ r1.
(b) b′(1) > 0 and no circle {r = r̄} is a trapped geodesic for r0 < r̄ ≤ r1.
(c) b′(r) > 0 for r ∈ (r0,r1].

We now go back to Example 2.3.2 and surfaces of revolution. Recall the
setup: r corresponds to the z-coordinate in R

3, h : [r0,r1] → R is a smooth
positive function, and S is the surface of revolution obtained by rotating the
graph of r 
→ h(r) about the z-axis. The surface S is given by

S = {(h(r) cos θ,h(r) sin θ,r) ; r ∈ (r0,r1], θ ∈ [0,2π ]}.
The metric on S induced by the Euclidean metric on R

3 has the form

g = (1 + h′(r)2) dr2 + h(r)2 dθ2.

Thus a(r) =
√

1 + h′(r)2 and b(r) = h(r).
Finally we give five illustrative examples: two examples where the geodesic

X-ray transform is injective, two examples where it fails to be injective, and
one example related to Eaton lenses.

Example 2.5.4 (Small spherical cap) Let h : [r0,r1] → R, h(r) = √
1 − r2

where r0 = −1 and r1 = −α where 0 < α < 1. Then S = Sα corresponds to
a punctured spherical cap strictly contained in a hemisphere (cf. Figure 2.1):

Sα = {x ∈ S2 ; x3 ≤ −α} \ {−e3}.
Clearly h′ > 0 in [r0,r1]. Thus the Herglotz condition is satisfied, and by
Theorem 2.4.1 the geodesic X-ray transform on Sα is injective whenever 0 <

α < 1. More precisely, a function f can be recovered from its integrals over
geodesics that start and end on the boundary {x3 = −α}, with the geodesics
going through the south pole excluded. Of course, geodesics in Sα are segments
of great circles.

Example 2.5.5 (Large spherical cap) Let h : [r0,r1] → R, h(r) = √
1 − r2

where r0 = −1 and r1 = β where 0 < β < 1. Then S = Sβ corresponds to a
punctured spherical cap that is larger than a hemisphere:

Sβ = {x ∈ S2 ; x3 ≤ β} \ {−e3}.
Now the Herglotz condition is violated: one has h′(r) > 0 for r < 0, but
h′(0) = 0 and h′(r) < 0 for r > 0. In particular, the geodesic {r = 0}, which
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Figure 2.1 Small spherical cap.

Figure 2.2 Large spherical cap.

is just the equator, is a trapped geodesic in Sβ . The great circles close to the
equator are also trapped geodesics, and Sβ is an example of a manifold with
strong trapping properties (cf. Figure 2.2).

In fact the geodesic X-ray transform is not injective on Sβ (even if the south
pole is included). To see this, let f : S2 → R be an odd function with respect
to the antipodal map, i.e. f (−x) = −f (x), and assume f is supported in
{−β < x3 < β}. For example, one can take f (x) = ϕ(x) − ϕ(−x) where ϕ is
a C∞ function supported in a small neighbourhood of e1 with ϕ > 0 near e1.

Using the support condition for f , the integral of f over a maximal geodesic
in (M,g) (a segment of a great circle C in S2) is equal to the integral of f over
the whole great circle C. But since f is odd, its integral over any great circle
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Figure 2.3 Catenoid.

is zero. This shows that the geodesic X-ray transform If of f in Sβ vanishes,
but f is not identically zero.

Example 2.5.6 (Catenoid) Let h : [−1,1] → R, h(r) = cosh(r) = er+e−r

2 .
The corresponding surface of revolution is the catenoid (cf. Figure 2.3)

S = {(cosh(r) cos(θ), cosh(r) sin(θ),r) ; r ∈ [−1,1],θ ∈ [0,2π ]}.
One has h′(r) = sinh(r) = er−e−r

2 . Thus in particular h′(0) = 0 and h′(r) > 0
for r > 0. Define

S± = {x ∈ S ; ± x3 > 0}.
Then S+ corresponds to h : (r0,r1] → R with r0 = 0 and r1 = 1. By Theorem
2.4.1 the geodesic X-ray transform in S+ is injective, when considering
geodesics that start and end on S+ ∩ {x3 = 1}. By symmetry, also the geodesic
X-ray transform on S− is injective for geodesics that start and end on S− ∩
{x3 = −1}. Since S = S+∪S−∪S0 where S0 = S∩{x3 = 0} has zero measure,
it follows that also the geodesic X-ray transform on S is injective (any smooth
function on S can be recovered from its integrals starting and ending on ∂S).

Note that since h′(0) = 0, the geodesic S0 is a trapped geodesic in S. The
manifold S has also other trapped geodesics that start on ∂S and orbit S0 for
infinitely long time. The catenoid is an example of a negatively curved mani-
fold with weak trapping properties (the trapped set is hyperbolic). Because the
trapping is weak, the geodesic X-ray transform is still invertible in this case.

Example 2.5.7 (Catenoid type surface with flat cylinder glued in the middle)
Let h : [−1,1] → R with h(r) = 1 for r ∈ [− 1

2,
1
2 ], h′(r) > 0 for r > 1

2 ,

https://doi.org/10.1017/9781009039901.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.005


2.5 Examples and Counterexamples 49

and h′(r) < 0 for r < − 1
2 , and let S be the surface of revolution obtained by

rotating h|[−1,1]. Then S ∩ {− 1
2 ≤ x3 ≤ 1

2 } is a flat cylinder.
Consider a smooth function f in S given by

f (h(r) cos θ,h(r) sin θ,r) = η(r),

where η ∈ C∞
c (− 1

2,
1
2 ) is nontrivial and satisfies

∫ 1/2
−1/2 η(r) dr = 0. Then f

integrates to zero over any geodesic starting and ending on ∂S. To see this,
note that f vanishes outside the flat cylinder, and any geodesic that enters the
flat cylinder must be a geodesic of the cylinder. Since h ≡ 1 in the cylinder, the
metric is dr2 +dθ2, one has a = b = 1, the geodesic equations are r̈ = θ̈ = 0,
and unit speed geodesics are of the form ζ(t) = (r(t),θ(t)) = (αt +β,γ t + δ)

where (ṙ)2 + (θ̇)2 = α2 + γ 2 = 1. Thus it follows that∫
ζ

f dt =
∫

η(αt + β) dt = 0.

Thus S is an example of a manifold that has a large flat part (the cylinder) with
many trapped geodesics, and the geodesic X-ray transform is not injective.
The reason for non-injectivity is that S contains part of R × S1, and the X-ray
transform on R is not injective (there are nontrivial functions that integrate to
zero on R).

Example 2.5.8 (Eaton lenses) Geodesics of a sound speed may also be
interpreted as the paths followed by light rays when a suitable index of
refraction n is introduced. According to Fermat’s principle light rays propagate
along geodesics of the metric gjk = n2δjk and thus by setting c = 1/n our
previous analysis applies. Let us consider an index of refraction n, which is
radial and work in polar coordinates, so that the metric is n2(dr2 + r2dθ2) and
hence a(r) = n(r) and b(r) = rn(r). Besides travel times between boundary
points, we might also be interested in how incoming light rays come out after
traversing through our Riemannian surface (the lens) determined by n(r). From
this point of view there are choices of n that produce interesting effects. We
mention here two noteworthy instances depicted in Figures 2.4 and 2.5.

The original Eaton lens (Figure 2.4) is given by

n(r) =
√

2

r
− 1,

while for the invisible Eaton lens (Figure 2.5), n is determined by

√
n = 1

nr
+

√
1

n2r2
− 1.

In both cases n(r) is defined for r ∈ (0,1] and in the second case n is given
intrinsically as the solution of the equation above. In the first case we see light
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Figure 2.4 Original Eaton lens.

Figure 2.5 Invisible Eaton lens.

rays rotating by π and in the second case we see light rays rotating by 2π and
hence becoming indistinguishable from the light rays of n = 1, hence the name
invisible Eaton lens. The index of refraction becomes infinite (in both cases) at
the origin.
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Exercise 2.5.9 Show that in both Eaton lenses, the Herglotz condition is
satisfied for all r ∈ (0,1) but the circle {r = 1} at the boundary is a trapped
light ray. Moreover, show that the geodesics behave as depicted in the pictures
(use Theorem 2.3.4). Can you design a lens so that lights rays come out of the
lens experiencing a rotation of π/2? (See Leonhardt and Philbin (2010) for
details on these lenses.)

Exercise* 2.5.10 Investigate if the X-ray transform is injective for the Eaton
lenses and for the case α = 1 in Example 2.5.4.
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