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Locally Analytic Representations of p-adic
Groups

Andreas Bode & Nicolas Dupré

11.1 Introduction

The p-adic representation theory of p-adic groups is the subject of much ongo-
ing research. It is primarily motivated by the desire to better understand the con-
jectural p-adic Langlands correspondence, but it is also an interesting branch
of representation theory in its own right. The purpose of this chapter, which
is based on a series of lectures given at the LMS ‘Autumn Algebra School’,
is to give an introduction to Schneider and Teitelbaum’s theory of admissible
locally analytic representations to people with an algebra/representation theory
background without assuming any familiarity with the Langlands program or
the number theoretic motivations for it. We therefore begin by briefly recalling
what the conjectured p-adic Langlands correspondence is.

Fix two primes ` and p. When ` 6= p, there is a classical Local Langlands
Correspondence, which can be roughly stated as follows: if n > 1 there is an
injection

Frobenius-semisimple, continuous
representations of Gal(Qp/Qp) on
n-dimensional Q`-vector spaces,

up to isomorphism

→


Irreducible, admissible,
smooth representations of

GLn (Qp) on Q`-vector
spaces, up to isomorphism

 .

In fact, one usually considers the larger class of Frobenius-semisimple repre-
sentations of the Weil–Deligne group on the left in order to get a bijection.
This correspondence can be uniquely characterised by various properties (e.g.
equivalence of L- and ε-factors of pairs), and can be stated more generally by
replacing Qp with some fixed finite extension F of Qp. This correspondence
was first established by Harris–Taylor [23] and Henniart [24], and more re-
cently by Scholze [40].

370

https://doi.org/10.1017/9781009093750.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.013


11 Locally Analytic Representations of p-adic Groups 371

When ` = p one would like to obtain an analogue of the above correspon-
dence, often referred to as the ‘p-adic Local Langlands Correspondence’. How-
ever, the situation is trickier as there are now ‘more’ Galois representations on
the left, due to the fact that the topologies of Gal(Qp/Qp) and of Qp are com-
patible. As a result one would need to enlarge the right-hand side, and to this
end Breuil [9] proposed to consider certain (not necessarily irreducible) Banach
space representations of GLn (Qp) over some fixed finite extension of Qp. In the
case n = 2, a correspondence was established using the fact that both sides can
be classified very explicitly in terms of (ϕ,Γ)-modules (see [14], [15], [12],
[13] amongst others). We note that this correspondence was only established
for GL2 (Qp) and not for GL2 (F), where F is more generally a finite extension
of Qp. The general situation (working with n > 2 or over some non-trivial finite
extension of Qp) is still very mysterious.

In the early 2000s, Schneider and Teitelbaum started the systematic study of
locally analytic representations of p-adic groups in a series of papers [34, 35,
36, 37, 38]. These locally analytic representations arise naturally in various ge-
ometric constructions, and they are related to Banach space representations by
the process of taking locally analytic vectors. Part of the challenge in working
with GLn (Qp)-representations over topological vector spaces is that one needs
to find the right finiteness condition to replace the notion of admissibility that
occurred in the ` 6= p case, in order to get a well-behaved theory which still re-
tains all the important examples that arose in the Langlands program. The class
of locally analytic representations that Schneider and Teitelbaum introduced to
serve that purpose are called admissible, and they generalise the above notion
of admissible smooth representations. The main aim of this chapter is to explain
their theory in detail.

In Section 11.2, we recall all the basic definitions required in order to de-
fine locally analytic representations and we provide examples. In Section 11.3,
we explain the construction of the distribution algebra and give some of its
properties. In Section 11.4 we explain the notion of a Fréchet–Stein algebra and
define admissible representations. We also give a short account of some further
developments in this theory. Finally, to make the material more accessible we
also include an appendix summarising all the notions from non-archimedean
functional analysis that we require.
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11.2 Basic Definitions

We begin by recalling the definitions of p-adic Lie groups and locally analytic
representations.

11.2.1 Non-archimedean Fields

Throughout, L will denote a field.

Definition 11.1 A non-archimedean absolute value (NAAV) on L is a function
|·| : L→ R such that for all a,b ∈ L:

(i) |a|> 0;
(ii) |a|= 0 ⇐⇒ a = 0;

(iii) |a ·b|= |a| · |b|; and
(iv) |a+b|6max{|a| , |b|}.

This gives a metric on L via d(a,b) := |a−b|, making L into a topological field.
The unit ball OL := {a ∈ L : |a|6 1} is a subring.

From now on, we assume that L is equipped with a NAAV and that it is
complete, i.e. Cauchy sequences converge. It is possible to develop a whole
theory of functional analysis over fields equipped with such absolute values,
see the Appendix.

Remark We can more generally topologise Ln for any n by equipping it with
the norm ||(a1, . . . ,an)|| := max{|a1| , . . . , |an|}. It then becomes an L-Banach
space.

Example 11.2 Let p be a prime number and let a ∈ Q. Define |a|p := p−r if
a = pr · m

n where (m, p) = (n, p) = 1. This is a NAAV on Q and the completion
of Q with respect to |·|p is denoted by Qp, the field of p-adic numbers, and the
unit ball of Qp is denoted by Zp, the ring of p-adic integers. Moreover, the
NAAV on Qp extends uniquely to a NAAV on L for any finite field extension
L/Qp.

Concretely, elements of Zp are ‘infinite base p expansions’, i.e. can be rep-
resented uniquely as a series

a0 +a1 p+a2 p2 + . . .+an pn + . . . ,
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where ai ∈ {0,1, . . . , p−1} for all i. We then have Qp = Zp[1/p].

Going back to general L, convergence of series will be central to the basic
definitions of locally analytic functions. Part (iv) in the definition of a NAAV
has the following immediate and useful consequence in that regard: if (an) is a
sequence in L, then

∑
n>0

an converges ⇐⇒ an→ 0 as n→ ∞.

In particular, as a function, a power series f (x) = ∑n>0 anxn will converge on a
ball B0,ε := {a ∈ L : |a|6 ε} if and only if εn |an| → 0 as n→ ∞.

11.2.2 p-adic Lie Groups

Given α = (α1, . . . ,αn) ∈ Nn, we adopt the notation |α| := α1 + . . .+αn and
Xα := Xα1

1 · · ·Xαn
n .

Definition 11.3 Let V be an L-Banach space and fix n> 1.

(i) If U ⊆ Ln is open, then a function f : U →V is locally analytic if for all
x0 ∈U , there exists ε > 0 and a power series F(X) = ∑α∈Nn vα Xα , where
vα ∈V and ε |α| · ||vα || → 0 as |ε| → ∞, such that for all x ∈U with
||x− x0||6 ε we have f (x) = F(x− x0).

(ii) Given x0 ∈ Ln and ε > 0, write B(x0,ε) = {x ∈ Ln : ||x− x0||< ε}. We say
that a map f : B(x0,ε)→V is holomorphic if f (x) = F(x− x0) for all
x ∈ B(x0,ε), with F as in (i). The vector space

F(x0,ε,V ) := { f : B(x0,ε)→V | f holomorphic}

is then an L-Banach space, with norm ||∑α∈Nn vα Xα ||= supα ε |α| ||vα ||.

This definition can be extended to the case where V is a Hausdorff locally
convex space. In that case, we say f : U → V is locally analytic if it factors
as a composite U →W →V , where W is an L-Banach space, the map U →W
is locally analytic as defined above and W → V is a continuous injective
L-linear map.

Next we can now introduce manifolds:

Definition 11.4 Let M be a Hausdorff topological space and let n> 1. An atlas
of dimension n on M is a set A= {(Ui,ϕi)}i∈I such that

• Ui ⊂M is open for all i ∈ I and M =
⋃

i∈I Ui;
• ϕi : Ui→ Ln is a homeomorphism onto an open subset of Ln for all i ∈ I; and
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• for all i, j ∈ I, the maps

ϕi(Ui∩U j)
ϕ j◦ϕ−1

i
�

ϕi◦ϕ−1
j

ϕ j(Ui∩U j)

are locally analytic.

We say an atlas A is maximal if for any other atlas B such that A∪B is also
an atlas, then B ⊆ A. We then say that M is a (locally L-analytic) manifold of
dimension n if it is equipped with a maximal atlas, and the pairs (Ui,ϕi) are
called charts.

Given a Hausdorff locally convex L-vector space V , we say that a map f :
M → V is locally analytic if f ◦ϕ−1 : ϕ(U)→ V is locally analytic for each
chart (U,ϕ) of M. Similarly, a map between manifolds is locally analytic if it
is locally analytic on the charts.

Finally we can talk about groups:

Definition 11.5 A manifold G is a Lie group if it is a group such that the
multiplication m : G×G→ G is locally analytic.

Remark Given a Lie group G, the inversion map g 7→ g−1 is automatically a
locally analytic isomorphism of manifolds (c.f. [33, Proposition 13.6]).

Example 11.6 The following are all examples of Lie groups:

(i) (Ln,+) or (On
L,+).

(ii) (L×, ·) or (O×L , ·).
(iii) (1+ pZp, ·)6 (Q×p , ·), i.e. elements of the form 1+a1 p+a2 p2 + . . ..
(iv) GLn (L), GLn (OL), SLn (L), SLn (OL).
(v) More generally, the L-valued points of any connected algebraic group

over L. In particular, the Borel subgroup

B =


Ñ
∗ . . . ∗

. . .
...
∗

é
∈ GLn(L)


and the maximal torus

T =


Ñ
∗ . . .

∗

é
∈ GLn(L)


of GLn (L) are Lie groups.
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(vi) The Iwahori subgroup of GL2 (Zp)

I =

®Ç
a b
c d

å
∈ GL2 (Zp) : c ∈ pZp

´
.

Most of these examples are algebraic in nature, but the point of the ana-
lytic setup is that we may study a class of representations larger than the alge-
braic ones.

11.2.3 Locally Analytic Representations

From now on, we fix complete non-archimedean fields L ⊆ K such that the
NAAV on K extends the one on L, and we fix G a locally L-analytic Lie group.
Note that in this setup K is an L-Banach space. We will study representations of
G on K-vector spaces. We assume that V is a Hausdorff locally convex K-vector
space and we write

Can(G,V ) := { f : G→V | f locally analytic}.

Definition 11.7 A representation ρ : G→GL(V ) is locally analytic if for each
v ∈V , the map g 7→ ρ(g)v belongs to Can(G,V ).

Remark This only depends on each vector v ∈V , so given any representation
on V , it makes sense to consider the locally analytic vectors,

V an := {v ∈V : (g 7→ ρ(g)v) ∈Can(G,V )},

a locally analytic subrepresentation.

Example 11.8 (i) If G is algebraic (e.g. GLn (L)) then any algebraic
representation of G is locally analytic, because the orbit maps are
polynomial functions on G.

(ii) If G = (Zp,+), we can define a character χ : G→ K× as follows. Pick
z ∈ K× such that |z−1|< 1. Then, for a ∈ Zp, set

χz(a) = za :=
∞

∑
n=0

(z−1)n

Ç
a
n

å
.

Here the binomial coefficient is defined as
(a

n

)
= a(a−1)...(a−n+1)

n! ∈ Zp. It
was shown by Amice [1, 16.1.15] that χz is locally analytic.

(iii) Let G = GL2 (Qp), B the Borel subgroup, T the maximal torus. Let
χ : T → K× be a locally analytic character. As T can be identified with a
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quotient of B, we may lift χ to B. Then we have the locally analytic
induction

IndG
B (χ) := { f ∈Can(G,K) : f (gb) = χ(b−1) f (g) ∀g ∈ G,b ∈ B}.

This is a locally analytic representation of G when G acts by left
translation, called a principal series representation.

In fact, more generally, given any locally L-analytic group G and any
locally analytic subgroup P such that G/P is compact, and given any
locally analytic representation V of P, the induction

IndG
P (V ) :=

¶
f ∈Can(G,V ) : f (gb) = b−1 · f (g) ∀g ∈ G,b ∈ P

©
is a locally analytic G-representation (see [22, Satz 4.1.5]).

(iv) When χ = 1 in (iii), the corresponding principal series representations
IndG

B (1) can be identified with the space of locally analytic functions on
P1, because G/B∼= P1. Moreover, we have a natural injection
1G→ IndG

B (1) with image the constant functions G→ K. The quotient
St := IndG

B (1)/1G is called the Steinberg representation. This also has a
geometrical interpretation, namely by a theorem of Morita [26] the
Steinberg representation is isomorphic to the strong dual of the space of
1-forms on the Drinfeld upper half plane P1(Cp)\P1(Qp).

Remark Even if G = (Zp,+), we can construct infinitely many irreducible,
infinite dimensional, locally analytic representations. If z ∈ K× as in example
(ii) and z is transcendental over Qp, and assuming that K is the smallest com-
plete field containing z, then Diarra [16, Théorème 5] showed that K is then an
irreducible Qp-representation Vz of G via

ρ(a)v =
∞

∑
n=0

(z−1)n

Ç
a
n

å
v,

and moreover he showed that if we instead choose z′ ∈ K× with |z′| 6= |z|, then
Vz is not isomorphic to Vz′ . Hence locally analytic representations are too wild
to study in general. We need a nicer subclass of representations within it.

11.3 The Distribution Algebra

The analytic nature of both the groups and representations makes it hard to
work with them directly. In order to study these representations more
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algebraically, we define an algebra D(G,K) such that®
sufficiently nice
loc. an. representations

´
↔
®

sufficiently nice
D(G,K)-modules

´
.

Here, ‘sufficiently nice’ will have to be some topological properties. Later, we
will see how to replace some of these topological properties with more alge-
braic ones.

We fix fields Qp ⊆ L ⊆ K with L/Qp finite, and assume further that K is
spherically complete with respect to a NAAV extending the one on L. We refer
the reader to the Appendix for the precise meaning of this, but we recall that
this is automatically satisfied if K is a finite extension of Qp.

11.3.1 The Space of Distributions

Recall that given a locally L-analytic manifold M, we have Can(M,K) =

{ f : M→ K| f is locally analytic}. Assume that M is strictly paracompact, i.e.
any open cover can be refined to one where the opens are disjoint, and of di-
mension d. We point out that this is not a very restrictive condition, for instance
it is always satisfied when M is a Lie group, see [33, Corollary 18.8]. In such a
setting, Féaux de Lacroix [22, 2.1.10] defined a K-locally convex structure on
Can(M,K), which we recall now.

First, note that if (Ui,ϕi)i∈I are the charts, by strict paracompactness we can
refine it to assume that the Ui are disjoint. Then since f : M → K is locally
analytic if and only if f ◦ϕ

−1
i : ϕi(Ui)→ K is locally analytic by definition, it

now follows that Can(M,K) = ∏i∈I Can(Ui,K). Moreover, by definition of what
it means for f ◦ϕ

−1
i to be locally analytic and by strict paracompactness, for

each f we can cover ϕi(Ui) by disjoint open balls Bi j (which depend on f ) so
that f is holomorphic on each Bi j.

Summarising the above, given f ∈ Can(M,K) there is a family of charts
(Vi,ϕi)i∈J of M and real numbers εi > 0 (i ∈ J) such that:

(i) M =
∏

i∈J Vi;
(ii) ϕi(Vi) = B(xi,εi) for some xi ∈ Ld ; and

(iii) f ◦ϕ
−1
i is holomorphic on B(xi,εi).

We then define an index I to be a family of charts (Vi,ϕi)i∈J of M satisfying
(i)–(ii) above. For each index I, we may form the product

FI(M,K) := ∏
i∈J

F(xi,εi,K).

Since each F(xi,εi,K) is Banach by Definition 11.3, this can be given the struc-
ture of a locally convex K-vector space (see Appendix). From the above we can
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see that

Can(M,K) = lim−→
I

FI(M,K),

where the limit is over all indices I, and it therefore has the structure of a
locally convex K-vector space as an inductive limit of locally convex spaces
(see Appendix).

Definition 11.9 With M as above, the space of distributions on M is the dual
D(M,K) :=Can(M,K)′.

Lemma 11.10 (i) ([36, Lemma 2.1]) If M is compact then D(M,K) is a
nuclear Fréchet space, and so in particular reflexive.

(ii) ([22, 2.2.4]) If M =
∏

i∈I Mi, where the Mi are pairwise disjoint compact
open subsets, then D(M,K) =

⊕
i∈I D(Mi,K) topologically.1

At first sight, it isn’t a priori clear what the elements of D(M,K) look like.
The only easy examples are the Dirac distributions which are defined as fol-
lows: let m ∈ M, then we have an element δm ∈ D(M,K) given by δm( f ) :=
f (m) for f ∈Can(M,K). This gives a map M→ D(M,K), m 7→ δm.

11.3.2 The Convolution Product

From now on, M = G is a Lie group. We now sketch the construction of the
product on D(G,K). It can be motivated as follows:

Note that, given a finite group H and a field k, one can identify the group
algebra kH with the dual vector space of the space C(H,k) of all functions
H → k. One can define Dirac distributions δh for h ∈ H as above. The group
operation H ×H → H gives rise to a map C(H,k)→ C(H ×H,k). Passing
to duals we get a map k(H×H) ∼= kH⊗k kH → kH, which gives a k-algebra
structure to kH and which agrees with the group operation on the Dirac deltas,
i.e. δh⊗δh′ 7→ δhh′ .

We now replicate this construction for the distributions on G. The key fact
is that there is a canonical isomorphism

D(G×G,K)∼= D(G,K)⊗̂KD(G,K),

where ⊗̂K denotes the completion of the usual algebraic tensor product with
respect to the so-called inductive topology – see [39, Section 12]. Also, the
group multiplication m : G×G→G induces a map Can(G,K)→Can(G×G,K),
f 7→ f ◦m. Dually this gives a map D(G×G,K)→ D(G,K).

1 This is useful when M = G is a Lie group and the Mi are left cosets of some compact open
subgroup G0 (e.g. G = GLn (Qp) and G0 = GLn (Zp)).
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Given u,v ∈ D(G,K), we define their convolution u ∗ v to be the image of
u⊗ v under the composite

D(G,K)⊗̂KD(G,K)
∼=−→ D(G×G,K)→ D(G,K).

The main result is then:

Theorem 11.11 ([21, 4.4.1 & 4.4.4]) Convolution defines a separately continu-
ous product on D(G,K) with unit δ1. When G is compact, this makes
D(G,K) into a Fréchet algebra i.e. ∗ : D(G,K)×D(G,K)→ D(G,K) is con-
tinuous.

The main moral of the story to come is that we gain more control by working
with D(G,K)-modules rather than locally analytic G-representations directly.

We now briefly describe more concretely the above definition of the distri-
bution algebra when G = Zp. By the compact topology on Zp, any index is
finite and consists of disjoint balls which may be shrunk so that they all have
the same radius. This radius is a negative power of p, and moreover the set of
open balls of radius p− j in Zp, for a fixed j > 1, are in bijection with Z/p jZ.
Thus we see that

Can(Zp,K) = lim−→
j>1

∏
b∈Z/p jZ

F(b, p− j,K)

with the obvious restriction maps in the directed system. Passing to the dual,
we have

D(Zp,K) = lim←−
j>1

∏
b∈Z/p jZ

F(b, p− j,K)′.

As an algebra, D(Zp,K) also has a geometric description. Indeed, recall the lo-
cally analytic characters from Example 11.8(ii): given any z∈K with |1− z|<1,
there is a locally analytic character χz of Zp. Thus, given any distribution
λ ∈ D(Zp,K), we may ‘evaluate’ λ at z by evaluating λ at χz ∈ Can(Zp,K).
This associates to λ a function called its ‘Fourier transform’. Using Fourier
theory, Amice showed that this explicitly realises the distribution algebra as
analytic functions on an open ball:

Theorem 11.12 ([2, 1.3 & 2.3.4]) Let X = {a ∈ K : |a| < 1} be the open unit
ball. Then D(Zp,K) is canonically isomorphic to the ring of rigid analytic
functions on X.
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11.3.3 A More Explicit Description of the Distribution Algebra

So far the only elements of D(G,K) that we have come across are the Dirac
delta distributions δg for g ∈ G,

δg : Can(G,K)→ K,

f 7→ f (g).

The definition of the convolution product yields immediately the following
lemma.

Lemma 11.13 The map g 7→ δg is a continuous map of monoids G→D(G,K),
i.e. δgh = δg ·δh for any g,h ∈ G.

In particular, there is a natural algebra morphism K[G]→ D(G,K). If G is
a compact, we can even go further: define the completed group algebra (or
Iwasawa algebra) by

K[[G]] := (lim←−Zp[G/N])⊗Zp K,

where the inverse limit is taken over all open normal subgroups N of G (note
that G/N is then a finite group by compactness of G).

In fact (compare e.g. the introduction of [38]), K[[G]] is the dual of all con-
tinuous functions G→ K, so our morphism actually extends naturally to an
algebra morphism θ : K[[G]]→ D(G,K).

Theorem 11.14 ([38, Theorem 5.2]) Let G0 denote G, but regarded as a Lie
group over Qp rather than L. The morphism L[[G]]→ K[[G]]→ D(G0,K) is
faithfully flat.

In other words, we can study the (’more classical’) L[[G]]-modules by pass-
ing to D(G0,K)-modules (applying D(G0,K)⊗L[[G]]−) without losing any in-
formation.

Proposition 11.15 ([36, Lemma 3.1]) The Dirac distributions δg span a dense
subspace of D(G,K).

Proof We only sketch the idea here. Let H 6 G be a compact open subgroup.
Then the coset decomposition of Lemma 11.10(ii) yields

D(G,K) = ⊕
g∈G/H

δg ∗D(H,K).

Using Lemma 11.13, we can thus reduce to the case where G itself is compact.
In particular, D(G,K) is a reflexive Fréchet space (Lemma 11.10(i)), so that
D(G,K)′ ∼= Can(G,K). Since an element f of Can(G,K) is zero if and only if
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f (g) = δg( f ) is zero for all g, the result then follows from the Hahn–Banach
theorem as given in Theorem 11.35 in the Appendix (as there is no non-zero
functional on D(G,K) vanishing on the closure of the K-span of all Dirac dis-
tributions).

We thus often think of D(G,K) as an ‘analytic’ group algebra. A special
property of D(G,K) is that apart from the distributions induced by the group
G, it also contains distributions induced by the Lie algebra:

Let g be the Lie algebra of G, e.g. G = SL2(Qp), g = sl2(Qp). Write gK =

g⊗K. If x ∈ g, we can form the distribution dist(x) by

dist(x)( f ) =
d
dt
( f (exp(tx)))|t=0.

This gives a linear map dist : g→ D(G,K), sending [x,y] to the commutator
dist(x)dist(y)−dist(y)dist(x) – so we obtain an algebra morphism d : U(gK)→
D(G,K).

Lemma 11.16 ([22, Korollar 4.7.4]) The map d is injective. The closure of

U(gK) in D(G,K) is a Fréchet algebra which we denote by U̇(gK).

At first, the object U̇(gK) might seem strange, but its elements are actually
very concrete. If x1, . . . ,xd is an ordered K-basis of gK , then the Poincaré–
Birkhoff–Witt theorem states that U(gK) admits a K-basis of the form

xα = xα1
1 xα2

2 . . .xαd
d ,

where α = (α1, . . . ,αd) ∈ Nd
0 . Now [36, Lemma 2.4] shows that an arbitrary

element of U̇(gK) can be written uniquely as

∑
α∈Nd

0

λα xα , λα ∈ K, π
−|α|n

λα → 0 as |α| → ∞ ∀n,

where π ∈ K is any non-zero element with |π|< 1.
It is worth contemplating this particular convergence condition for a while,

as it appears quite naturally in several places in p-adic representation theory
and rigid analytic geometry.

Recall from subsection 11.2.1 that a power series ∑λα Xα converges on a
ball of radius ε if and only if ε |α||λα | → 0. We should therefore think of the

convergence condition in the description of U̇(gK) as requiring an infinite ra-

dius of convergence – i.e. elements of U̇(gK) ‘look like’ analytic functions on
the dual vector space (gK)

∗. Just as U(gK) is a non-commutative deformation
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of the ring of polynomial functions on (gK)
∗, as expressed in the Poincaré–

Birkhoff–Witt isomorphism gr U(gK)∼= Sym(gK), we should think of U̇(gK) as
a non-commutative version of the ring of (globally) analytic functions on (gK)

∗.
In summary, D(G,K) is a topological group algebra which is sufficiently

thickened to also incorporate the infinitesimal information, present in the form
of the Lie algebra.

We now turn to the study of D(G,K)-modules and their role in locally an-
alytic representation theory. Just as with the usual group algebra, a locally
analytic G-representation carries a natural D(G,K)-module structure (this is
actually a bit subtle to show, see [36, section 3] for details). It turns out, how-
ever, that it is more useful to dualize this operation to get a better handle on the
topology.

Theorem 11.17 ([36, Corollary 3.3]) There is an anti-equivalence of cate-
gories

{locally analytic G-representations on spaces of compact type}

��
{sep. continuous D(G,K)-modules in nuclear Fréchet spaces}

given by sending V to its strong dual V ′.

Remark We refer to the appendix for the definitions of ‘compact type’ and
‘nuclear’, and only comment on their function in this result: compact type is
a property that ensures that V is reflexive, i.e. (V ′)′ ∼= V , and nuclear Fréchet
spaces are those spaces which are dual to spaces of compact type. The con-
ditions are therefore necessary in the theorem above to ensure that the duality
functor is an anti-equivalence on the underlying topological vector spaces.

11.4 Fréchet–Stein Algebras

We saw above how we can think of locally analytic G-representations (of com-
pact type) as certain topological modules over the distribution algebra D(G,K).
The problem persists however that these are topological modules, and doing al-
gebra with topological objects is quite difficult. For instance, the category of
topological D(G,K)-modules knows no ‘isomorphism theorem’: if f : M→ N
is a morphism, then M/ker f need not be isomorphic to the image of f , as the
quotient topology on M/ker f need not agree with the subspace topology on
im f . In particular, we are dealing with categories that are not abelian.
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11.4.1 Toy Model: Noetherian Banach Algebras and Finitely
Generated Modules

Let A be a Noetherian Banach K-algebra, i.e. it is a Noetherian K-algebra
which is complete with respect to some (submultiplicative) norm. The category
of normed A-modules (or of Banach modules if we insist on completeness)
displays the same problems alluded to above. But here there is an excellent
remedy.

Theorem 11.18 (see [7, sections 3.7.2, 3.7.3]) Any (abstract) finitely generated
A-module can be endowed with a canonical Banach norm such that any A-
module map between finitely generated modules is continuous. These norms
are compatible with the formation of submodules, quotients and direct sums.

More abstractly: there is a fully faithful functor from (abstract!) finitely gen-
erated A-modules to the category of Banach A-modules, exhibiting the former
as an (abelian!) subcategory of the latter.

Proof (Rough sketch.) If M is a finitely generated A-module, there exists some
surjection Ar →M. We can check that this endows M with a Banach norm by
checking that every submodule of Ar is closed. This quotient norm then has the
property that M→N is continuous if and only if the composition Ar→M→N
is. But if N is another finitely generated A-module endowed with such a norm,
then any A-linear map Ar → N is a sum of action maps and hence continuous.
This shows that any A-module map M → N is automatically continuous. In
particular (taking M = N), Banach norms arising from a different generating
set give rise to an equivalent norm. Now check that any submodule of a finitely
generated A-module is a closed subspace with respect to this norm, by reducing
to the case of Ar.

Remark This applies e.g. to the Tate algebra

K〈x〉=

{
∑

i∈N0

aix
i : |ai| → 0

}
of analytic functions on the closed unit disk, ensuring that p-adic analytic ge-
ometry (and its theory of coherent modules) is well behaved.

11.4.2 Fréchet–Stein Algebras and Coadmissible Modules

It turns out that D(G,K) is hardly ever Noetherian Banach – recall for example
from Theorem 11.12 that D(Zp,K) is the ring of analytic functions on the open
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unit disk. As the open disk is the union of countably many closed disks (with
radius approaching 1), D(Zp,K) is not Noetherian Banach, but rather an inverse
limit of Noetherian Banach algebras.

Definition 11.19 ([38, section 3]) Let A be a Fréchet K-algebra. We say that
A is a Fréchet–Stein algebra if A can be written as a countable inverse limit
A = lim←−An, where each An is a Noetherian Banach K-algebra such that An+1→
An has dense image and turns An into a flat An+1-module on both sides.

An A-module M is called coadmissible if M = lim←−Mn, where Mn is a finitely
generated An-module, and the natural morphism An ⊗An+1 Mn+1 → Mn is an
isomorphism.

Example 11.20 As before, let π ∈ K be non-zero with |π|< 1. Let

An = K〈πnx〉=
{
∑aix

i : π
−inai→ 0

}
be the ring of analytic function on a closed disk of radius |π|−n. Then A= lim←−An

is the ring of analytic functions on X = ∪SpAn, the ‘affine line’. Then A is a
Fréchet–Stein algebra, and coadmissible A-modules are precisely the global
sections of coherent OX -modules.

By exactly the same argument, D(Zp,K) is a Fréchet–Stein algebra, and
coadmissible D(Zp,K)-modules are given as global sections of coherent mod-
ules on the open unit disk.

Just as in these examples, the Mn can in general be recovered from M, which
allows us to go back and forth between M and its ‘Noetherian levels’.

Lemma 11.21 ([38, Corollary 3.1]) If M is a coadmissible A-module, then the
natural morphism An⊗A M→Mn is an isomorphism.

Proof (Sketch.) By our density assumption, An ⊗A M → Mn has dense im-
age. It follows from our toy model that any (automatically finitely generated)
An-submodule of Mn is closed, so the morphism is in fact surjective. For injec-
tivity, suppose that ∑

k
i=1 bi⊗ xi ∈ An⊗A M is in the kernel. We now consider

the morphisms ϕm : Ak
m→Mm sending (a1, . . . ,ak) to ∑aixi, where xi denotes

the image of xi in Mm. By construction, lim←−kerϕm is a coadmissible A-module,
and applying the same surjectivity argument as above, this time to lim←−kerϕm,
we can compute that ∑bi⊗ xi = 0. This proves injectivity.

We now extend the ideas from our toy model to the Fréchet–Stein setting.

Lemma 11.22 ([38, paragraph after Lemma 3.6]) Any coadmissible A-module
can be endowed with a canonical Fréchet topology such that any A-module
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morphism between coadmissible A-modules is continuous. Kernel and cokernel
of any morphism between coadmissible A-modules are also coadmissible.

Proof Equip each Mn with its canonical Banach norm and take the limit. Any
morphism M→N then gives rise to An-module morphisms Mn→Nn by Lemma
11.21, and these are continuous by our toy model. Thus M→ N is continuous
by definition of the inverse limit topology. It is easy to verify that kernels and
cokernels are given as the inverse limit of the corresponding kernels and cok-
ernels on the Noetherian level.

Proposition 11.23 ([38, Lemma 3.6]) Let A be a Fréchet–Stein algebra and let
M be a coadmissible A-module. Let N 6M be a submodule. The following are
equivalent:

(i) N is coadmissible.
(ii) N is closed with respect to the canonical topology on M.

(iii) M/N is coadmissible.

Corollary 11.24 The category of coadmissible A-modules is an abelian cate-
gory and contains all finitely presented A-modules.

In other words, the theory of coadmissible modules over Fréchet–Stein alge-
bras follows the same philosophy as finitely generated modules over Noetherian
Banach algebras did in our toy model: they provide us with an abelian category
of ‘topological’ modules which can be manipulated purely algebraically.

11.4.3 Distribution Algebras of Compact Groups Are
Fréchet–Stein

It thus remains to show that distribution algebras are indeed Fréchet–Stein al-
gebras (provided that G is compact). The proof of this result, given in [38], is
quite involved, but we can at least indicate the main ideas. We have already
discussed the example of G = Zp above, which is not difficult to generalize
to G = Zd

p. We then generalize further to the case where G is still structurally
similar to Zd

p – namely, that G is uniform pro-p. Since any compact p-adic Lie
group contains such a group as an open subgroup, we can then conclude with
the usual coset decomposition from Lemma 11.10(ii).

Instead of giving a formal definition, let us treat uniform pro-p groups as a
black box and discuss which properties might help us to generalize from Zd

p to
a more general class of groups.

Definition 11.25 Let G be a locally Qp-analytic group which is pro-p. We
say that G admits an ordered basis if there exists an ordered set of topological
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generators h1, . . . ,hd such that the map

Zd
p→ G,

(x1, . . . ,xd) 7→ hx1
1 . . .hxd

d

is a homeomorphism.

In particular, an ordered basis yields a global chart for the group G, giv-
ing us isomorphisms of topological vector spaces Can(Zd

p,K)∼=Can(G,K) and
hence D(Zd

p,K)∼= D(G,K). Note, however, that this tells us nothing about the
algebra structure on D(G,K): if the hi do not commute, then we obtain a non-
commutative convolution product which cannot be read off from the chart. In
other words, we can use this description to bring elements of D(G,K) into a
standard form, but the question remains how to multiply two such expressions.

On the other hand, if the hi do commute, then the above chart is a group
isomorphism and we have indeed reduced to the case of G = Zd

p. The crucial
idea is therefore to consider groups admitting an ordered basis which is com-
mutative ‘up to higher order terms’.

Lemma 11.26 ([17, Theorem 8.18, Theorem 4.9, Lemma 4.10]) Let G be a
uniform pro-p group. Then G is locally Qp-analytic and admits an ordered
basis h1, . . . ,hd such that each commutator hih jh

−1
i h−1

j is a pth power, i.e. there

exists g ∈ G such that hih jh
−1
i h−1

j = gp.

With this result in place, one can employ graded methods to show (after a
significant amount of work) the following.

Proposition 11.27 ([38, Theorem 4.10]) If G is a uniform pro-p group, viewed
as a locally Qp-analytic group, then D(G,K) is a Fréchet–Stein algebra.

Lemma 11.28 ([17, Corollary 8.34]) Every compact locally Qp-analytic group
contains an open normal subgroup which is uniform pro-p.

Theorem 11.29 ([38, Theorem 5.1], [30, Theorem 2.3]) Let G be a compact

locally L-analytic group and let g be its Lie algebra. Then D(G,K) and U̇(gK)

are Fréchet–Stein algebras.

Proof (Sketch.) For U̇(gK), note the similarity to the example of analytic func-
tions discussed before. See [30, Theorem 2.3], which reformulates [25, Theo-
rem 1.4.2]. A more general argument can be found in [5, Theorem 6.7].

Let G0 be G, viewed as a locally Qp-analytic group, and let H be an open,
normal, uniform pro-p subgroup. By Proposition 11.27, D(H,K) is Fréchet–
Stein, so we can write D(H,K) ∼= lim←−D(H,K)n for some suitable Noetherian
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Banach algebras. By Lemma 11.10.(ii),

D(G0,K)∼=⊕g∈G0/Hδg ∗D(H,K),

i.e. D(G0,K) is a free D(H,K)-module of finite rank (by compactness). It is
then not too difficult to check that D(G0,K) is also Fréchet–Stein – it is trivially
a coadmissible D(H,K)-module, and the only thing one needs to verify is that
the algebra structure on D(G0,K) extends to an algebra structure on

D(G0,K)n := D(H,K)n⊗D(H,K) D(G0,K)∼=⊕δg ∗D(H,K)n,

as D(G0,K)n then inherits all desired properties from D(H,K)n. Thus D(G0,K)

is Fréchet–Stein.
Finally, embedding locally Qp-analytic functions G→ K into the space of

locally L-analytic functions G → K yields dually a surjection D(G0,K) →
D(G,K), exhibiting D(G,K) as a topological quotient algebra of D(G0,K). We
can thus deduce that D(G,K) is Fréchet–Stein.

It is worth pointing out a feature which is quite common in this theory: the
general case is often much less accessible than the case ‘L = Qp’, so that we
are forced to take a detour via G0 and descend along D(G0,K)→ D(G,K).
This also explains the restrictions in the faithful flatness result Theorem 11.14:
while some properties, like being Fréchet–Stein, are preserved when taking the
(Fréchet) quotient, this certainly need not be the case for the property of being
faithfully flat. We can prove the result for G0 (again making use of uniform pro-
p subgroups), but a priori this does not tell us anything about the general case.

Let G be a compact locally L-analytic group. By the above, it now makes
sense to talk about coadmissible D(G,K)-modules. We note that coadmissible
modules are indeed contained in the category appearing in the equivalence of
Theorem 11.17.

Lemma 11.30 ([38, Lemma 6.1]) Let G be compact. Then any coadmissible
D(G,K)-module, endowed with its canonical Fréchet structure, is a nuclear
Fréchet space.

This justifies the following definition.

Definition 11.31 Let G be a locally L-analytic group, and let V be a locally
analytic G-representation of compact type. We say that V is admissible if V ′

is a coadmissible D(H,K)-module for some (equivalently, for any) compact
subgroup H 6 G.
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We have thus reached our goal. We have the following commutative dia-
gram (for G compact), where the horizontal arrows are (anti-)equivalences of
categories and the vertical arrows are fully faithful embeddings.ß

admissible
G-representations

™
∼= //

� _

��

ß
coadmissible

D(G,K)-modules

™
� _

�� locally analytic
G-representations on

spaces of compact type

 ∼= //

 sep. continuous
D(G,K)-modules in

nuclear Fréchet spaces


As mentioned before, the crucial feature is that the category of coadmissible
D(G,K)-modules is an abelian category which embeds naturally into the cate-
gory of abstract D(G,K)-modules. In this way, admissible representations can
now be studied purely algebraically.

11.4.4 Some Further Directions

We give here a (non-exhaustive) list of further developments in the field:

(i) As mentioned in the introduction, the p-adic local Langlands conjecture
relates n-dimensional Galois representations to certain unitary Banach
representations of GLn (Qp). Often it is helpful to restrict a unitary
representation to its locally analytic vectors (analogously to the smooth
vectors for complex representations). From this viewpoint, the faithful
flatness result Theorem 11.14 ensures that the functor of taking locally
analytic vectors is exact and does not annihilate any non-zero
representations (see [38, Theorem 7.1]).

(ii) These lectures should already have illustrated that some ideas from
p-adic geometry arise quite naturally in the study of locally analytic
representations. It is therefore not surprising that a number of distinctly
geometric tools have been developed, often influenced by complex
geometric representation theory. For instance, if G = G(L) for some split
reductive algebraic group G, one can establish an equivalence of
categories between coadmissible D(G,K)-modules with trivial
infinitesimal central character and a certain class of G-equivariant p-adic
D-modules on the p-adic analytic flag variety, analogously to
Beilinson–Bernstein theory over the complex numbers – see e.g. [4],
[3], [29].
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There is also a growing body of literature on particular representations
coming from geometry as certain cohomology groups (e.g. the
cohomology of Drinfeld’s upper half plane and its tower of coverings),
often motivated by the Langlands programme – see e.g. [27], [20], [18].

(iii) One phenomenon which we have exploited regularly is the description of
D(Zp,K) as the ring of functions on the open unit disk, where we could
view the open unit disk as the set of all locally analytic characters of
Zp. This observation is also quite helpful in the theory of (ϕ,Γ)-modules
(and hence in Colmez’s work on the pLLC for GL2(Qp)). Schneider and
others have generalised this approach to consider ‘character varieties’
for the ring of integers of more general finite field extensions of Qp

(see [34], [6]).

(iv) The study of coadmissible U̇(gK)-modules can be developed along similar
lines as the representation theory of complex Lie algebras. For instance,

the centre of U̇(gK) can be described via an extension of the usual Harish-
Chandra isomorphism, c.f. [25, Theorem 2.1.6]. In fact, if G is the group
of L-rational points of a connected, split reductive algebraic group over
L and if the field K is discretely valued, the Harish-Chandra isomorphism
extends to the distribution algebra D(G,K), c.f. [25, Theorem 2.4.2].

There is also an analogue of the BGG category O for U̇(gK), see [31].

(v) For more details on locally analytic induction, see the discussion of
principal series representations of GL2 in [36]. We also mention that
Orlik–Strauch [28] give a functor which constructs a locally analytic

G-representation out of a P-equivariant U̇(gK)-module in the BGG
category O and a smooth P-representation (P being a parabolic subgroup
of a split reductive group G).

(vi) As one might imagine, there are many links between the p-adic theory and
the mod p theory: for example, if V is a unitary Banach representation of G
over Qp, then its unit ball is a representation over Zp and we can consider
its reduction mod p. There is a mod p Langlands conjecture which
is being developed in tandem with the p-adic one, see e.g. [11], [10].

11.5 Appendix: Some Non-archimedean Functional Analysis

Throughout we made use of various notions appearing in non-archimedean
functional analysis. Here we collect the various facts and definitions required.
A main reference for this material is e.g. [32]. Throughout this appendix, K is
a field equipped with a NAAV and is complete.
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11.5.1 Locally Convex Spaces

Definition 11.32 A (non-archimedean) semi-norm on a K-vector space V is a
function q : V → R>0 satisfying:

(i) q(av) = |a|q(v) for all v ∈V and a ∈ K; and

(ii) q(v+w)6max(q(v),q(w)) for all v,w ∈V .

Condition (ii) is called the strong triangle inequality. Note that (i) implies in
particular that q(0) = 0 and (i) and (ii) imply that the set {v ∈V : q(v) = 0} is
a vector subspace of V . If furthermore the condition

(iii) q(v) = 0 if and only if v = 0

is satisfied then we say that q is a norm. When q is a norm, it is conventional to
denote it by ||·||.

Given a family of semi-norms (qi)i∈I on V , we may assign to V the coarsest
topology such that qi : V → R is continuous for all i∈ I and all translation maps
v+ · : V → V , for v ∈ V , are continuous. In such a case we call V a locally
convex space. If the topology is defined by a single (semi-)norm q, we call V a
(semi-)normed space.

We note here that when a locally convex space is finite dimensional, it has
nice properties:

Proposition 11.33 ([32, Proposition 4.13]) Every Hausdorff locally convex
topology on a finite dimensional vector space V = Kn (n > 1) is equivalent
to the one defined by the norm ||(a1, . . . ,an)||= max16i6n |ai|.

There is another equivalent definition of a locally convex topology (see [32,
Proposition 4.4]). Given a K-vector space V , a lattice in V is an OK-submodule
M of V such that the canonical map M⊗OK K → V is an isomorphism. Then
V is locally convex if and only if there exists a non-empty family of lattices
{Mi}i∈I of V with the properties

(i) for any i ∈ I and a ∈ K× there exists j ∈ I such that M j ⊆ aMi; and

(ii) for any two i, j ∈ I, there exists k ∈ I such that Mk ⊆Mi∩M j.

A basis for the topology on V is then given by the subsets of the form v+Mi

for v ∈V and i ∈ I.
We now describe explicitly various constructions with locally convex spaces

that we use in this chapter.

https://doi.org/10.1017/9781009093750.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.013


11 Locally Analytic Representations of p-adic Groups 391

• Suppose {Vi}i∈I is an inductive system of locally convex K-vector spaces.
Then we can equip lim−→i∈I

Vi with the final locally convex topology with

respect to the maps ϕ j : Vj→ lim−→i∈I
Vi. Explicitly, it is defined by the family

of all lattices M ⊆ lim−→i∈I
Vi such that ϕ

−1
j (M)⊆Vj is open for all j ∈ I.

• Suppose {Vi}i∈I is a family of locally convex K-vector spaces. Then we
may equip

⊕
i∈I Vi with the final locally convex topology with respect to the

inclusions Vj→
⊕

i∈I Vi as above.
• Suppose again that {Vi}i∈I is a family of locally convex K-vector spaces.

Then we may define a locally convex topology on the direct product ∏i∈I Vi

this time using seminorms as follows: if for each j ∈ I,(q jk)k∈J denotes the
family of seminorms defining the topology on Vj, then we give ∏i∈I Vi the
locally convex topology defined by the family of seminorms

∏
i∈I

Vi→Vj
q jk→ R>0

for j ∈ I and k ∈ J.
• Given a locally convex K-vector space V , we let

V ′ = {ϕ ∈V ∗ : ϕ is continuous}

be the continuous dual of V . We define a subset B⊆V to be bounded if for
any open lattice M ⊆V , there exists a ∈ K such that B⊆ aM.2 Given a
bounded B⊆V , we may define a seminorm pB on V ′ by

pB(ϕ) := sup
b∈B
|ϕ(b)| .

The seminorms {pB : B bounded in V} define a locally convex topology on
V ′ called the strong topology. When V is normed, this topology is just the
normed topology on V ′ given by the operator norm

||ϕ|| := sup
06=v∈V

||ϕ(v)||
||v||

.

We will always assume in this chapter that our duals are equipped with the
strong topology. We next turn to the Hahn–Banach theorem. For this we need
the notion of a spherically complete base field.

Definition 11.34 We say that our field K is spherically complete if for any
decreasing sequence B1 ⊃ B2 ⊃ ·· · of balls in K, the intersection

⋂
i∈N Bi is

non-empty.

2 When V is normed this is equivalent to saying ||B|| is bounded in R.
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As an example, any finite extension of Qp is spherically complete because
these fields are locally compact. But not all complete non-archimedean fields
are spherically complete. For instance, one may consider the algebraic closure
Qp of Qp. There is a unique extension of the p-adic absolute value to it, but
it is no longer complete. Its completion, denoted by Cp, is a complete non-
archimedean field and is not spherically complete. See [32, Section I.1] for
more details.

This condition is required in order to get that the dual V ′ of a locally con-
vex vector space is non-zero, which is a consequence of the following Hahn–
Banach theorem:

Theorem 11.35 ([32, Proposition 9.2]) Suppose that K is spherically complete.
Let V be a K-vector space, q a seminorm on V and V0 6V a vector subspace.
Then for any linear form f0 : V0 → K such that | f0(v)| 6 q(v) for all v ∈ V0,
there exists a linear form f : V → K such that f |V0 = f0 and | f (v)| 6 q(v) for
all v ∈V .

It follows as a corollary of this theorem that any continuous seminorm on a
vector subspace V0 of a locally convex space V extends to a continuous semi-
norm on V .

11.5.2 Fréchet and Banach spaces

If ||·|| is a norm on V , the normed space topology on V as we defined it is the
usual metric topology coming from ||·||.

Definition 11.36 A normed space that is complete, meaning that all Cauchy
sequences converge, is called a Banach space. More generally, a locally convex
space that is metrizable and complete is called a Fréchet space.

Of course, any Banach space is in particular a Fréchet space. Also, K is
itself a Banach space with the absolute value as a norm, and more generally Kn

is Banach with the topology given in Proposition 11.33.
In general, a Fréchet space V can be described as follows. Because V is

metrizable, there is an increasing countable family of seminorms q1 6 q2 6 · · ·
defining the topology on V (see [32, Proposition 8.1]). Then for each i> 1, we
denote by Vi the metric space completion of V/{v ∈ V : qi(v) = 0}, which is
a Banach space with the norm induced by qi. There is moreover a continuous
linear map Vi+1→Vi. Then V is canonically isomorphic to the projective limit
lim←−Vi. So one may describe Fréchet spaces as being the countable projective
limits of Banach spaces.

We now turn to the notion of a compact type space:
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Definition 11.37 Let V and W be Hausdorff locally convex K-vector spaces.

(i) A subset B⊆V is called compactoid if for any open lattice M ⊆V , there
are finitely many vectors v1, . . . ,vn ∈V such that
B⊆M+OKv1 + . . .+OKvn.

(ii) A bounded OK-submodule B⊆V is called c-compact if it is compactoid
and complete.

(iii) A continuous linear map f : V →W is called compact if there is an open
lattice M ⊆V such that the closure of f (M) in W is bounded and
c-compact.

(iv) V is said to be of compact type if it is the locally convex inductive limit
of a sequence

V1
ι1−→V2

ι2−→V3
ι3−→ ·· ·

where each Vi is a Banach space and each map ιi is an injective compact
map.

The key property of these spaces is the following:

Theorem 11.38 ([32, Proposition 16.10]) Any locally convex K-vector space of
compact type V = lim−→n>1

Vn is reflexive, i.e. the evaluation map V → (V ′)′ is an

isomorphism, its strong dual V ′ is Fréchet and there is a canonical isomorphism
V ′ ∼= lim←−n>1

V ′i .

There is a dual notion:

Definition 11.39 A Fréchet space V is called nuclear if V ∼= lim←−n>1
Vn is a

countable projective limit of Banach spaces, where the transition maps
Vn+1→Vn are all compact.

There is more generally a notion of nuclear locally convex space, see [32,
Section 19]. The key fact we’ll need is the following:

Theorem 11.40 ([36, Theorem 1.3]) A Fréchet space V is the strong dual of a
locally convex K-vector space of compact type if and only if V is nuclear.
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https://doi.org/10.1017/9781009093750.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.013


394 Andreas Bode & Nicolas Dupré
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