Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T07:08:04.715Z Has data issue: false hasContentIssue false

Chemical synthesis and characterization of boron/boron nitride core–shell nanostructures

Published online by Cambridge University Press:  31 January 2011

K. F. Huo
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Z. Hu
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
J. J. Fu
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
H. Xu
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
X. Z. Wang
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Y. Chen
Affiliation:
Key Lab for Mesoscopic Materials Science and Jiangsu Province Lab of Nanotechnology, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Y. N. Lü
Affiliation:
College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
B. H. Liu
Affiliation:
Department of Materials Science, The National University of Singapore, Singapore 119260
J. Ding
Affiliation:
Department of Materials Science, The National University of Singapore, Singapore 119260
Get access

Abstract

A moderate chemical method [i.e., the reaction of diborane (B2H6) and a mixture gas of ammonia and nitrogen (NH3/N2) over nanoscale iron boride at 1100 °C] was developed to explore the boron nitride (BN) nanostructures. The products were well characterized by high-resolution electron microscopy and energy-dispersive x-ray spectroscopy. Two types of novel core–shell nanocapsules of amorphous boron core encapsulated in crystalline boron nitride shell were obtained. The first one looked like a peanut with an amorphous B core containing a trace of BN crystallites, a transition layer of BN nanofibers and amorphous B, and a thornlike shell of BN nanofibers. The second one looked like a perfect sphere consisting of a pure amorphous B core and a rather smooth crystalline BN shell. These results not only provided us a new chemical method for preparing BN nanostructures but also enriched the important BN nanostructures family. A growth mechanism is also briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H.W., Heath, J.R., O'Brien, S.C., and Smalley, R.E., Nature 318, 162 (1985).Google Scholar
2.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
3.Masuda, M., Maeda, K., Kobayashi, T., Shiomi, S., Fujiwara, Y., and Saito, Y., Jpn. J. Appl. Phys. 39, L733 (2000).CrossRefGoogle Scholar
4.Konno, H., Matsuura, R., Yamasaki, M., and Habazaki, H., Synth. Met. 125, 167 (2001).CrossRefGoogle Scholar
5.Jacobsen, R.L. and Monthioux, M., Nature 385, 211 (1997).Google Scholar
6.Charlier, J.C. and Rignanese, G.M., Phys. Rev. Lett. 86, 5970 (2001).Google Scholar
7.Ugarte, D., Nature 359, 707 (1992).CrossRefGoogle Scholar
8.Banhart, F. and Ajayan, M., Adv. Mater. 9, 261 (1997).Google Scholar
9.Soma, T., Sawaoka, A., and Saito, S., Mater. Res. Bull. 9(6), 755 (1974).Google Scholar
10.Paine, R.T. and Narula, C.K., Chem. Rev. 90, 73 (1990).Google Scholar
11.Hirano, T., Oku, T., and Suganuma, K., Diamond Relat. Mater. 9, 625 (2000).Google Scholar
12.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).Google Scholar
13.Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., and Yusa, H., Appl. Phys. Lett. 69, 2045 (1996).Google Scholar
14.Lourie, O.R., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S., and Buhro, W.E., Chem. Mater. 12, 1808 (2000).CrossRefGoogle Scholar
15.Chen, Y., Conway, M., Williams, J.S., and Zou, J., J. Mater. Res. 17, 1896 (2002).Google Scholar
16.Tang, C., Bando, Y., Sato, T., and Kurashima, K., Chem. Commun. 12, 1290 (2002).Google Scholar
17.Ma, R., Bando, Y., and Sato, T., Chem. Phys. Lett. 337, 61 (2001).Google Scholar
18.Bartnitskaya, T.S., Oleinik, G.S., Pokropivny, A.V., and Pokropivny, V.V., JEPT Lett. 69, 163 (1999).Google Scholar
19.Deepak, F.L., Vinod, C.P., Mukhopadhyay, K., Govindaraj, A., and Rao, C.N.R., Chem. Phys. Lett. 353, 345 (2002).Google Scholar
20.Huo, K.F., Hu, Z., Chen, F., Fu, J.J., Chen, Y., Liu, B.H., Ding, J., Dong, Z.L., and White, T., Appl. Phys. Lett. 80, 3611 (2002).Google Scholar
21.Han, W.Q., Bando, Y.S., Kurashima, K.J., and Sato, T., Jpn. J. Appl. Phys. 38, L755 (1999).Google Scholar
22.Oku, T., Hirano, T., Kuno, M., Kusunose, T., Niihara, K., and Suganuma, K., Mater. Sci. Eng. B 74, 206 (2000).CrossRefGoogle Scholar
23.Golberg, D., Bando, Y., Stephan, O., and Kurashima, K., Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
24.Pokropivny, V.V., Skorokhod, V.V., Oleinik, G.S., Kurdyumov, A.V., Bartnitskaya, T.S., and Pokropivny, A.V., Solid, J.State Chem. 154, 214 (2000).CrossRefGoogle Scholar
25.Han, W.Q., Redlich, P., Ernst, F., and Ruhle, M., Appl. Phys. Lett. 75, 1875 (1999).CrossRefGoogle Scholar
26.Shen, Z.Q., He, L.L., Wu, E.D., Fan, Y.Y., He, J.F., Cheng, H.M., Li, D.X., and Ye, H.Q., J. Mater. Res. 17, 2761 (2002).Google Scholar
27.Bando, Y., Ogawa, K., and Golberg, D., Chem. Phys. Lett. 347, 349 (2001).CrossRefGoogle Scholar
28.Kuno, M., Oku, T., and Suganuma, K., Scripta Mater. 44, 1583 (2001).Google Scholar
29.Hirano, T., Oku, T., Kawaguchi, M., and Suganuma, K., Mol. Cryst. Liq. Cryst. 340, 787 (2000).Google Scholar
30.Saito, Y., Maida, M., and Matsumoto, T., Jpn. J. Appl. Phys. P1. 38, 159 (1999).CrossRefGoogle Scholar
31.Oku, T., Kusunose, T., Niihara, K., and Suganuma, K., J. Mater. Chem. 10, 255 (2000).Google Scholar
32.Komatsu, S., Shimizu, Y., Moriyoshi, Y., Okada, K., and Mitomo, M., Appl. Phys. Lett. 79, 188 (2001).Google Scholar
33.Ma, R.Z., Bando, Y., Sato, T., Golberg, D., Zhu, H.W., Xu, C.L., and Wu, D.H., Appl. Phys. Lett. 81, 5225 (2002).Google Scholar
34.Tang, C.C., Bando, Y., Ding, X.X., Qi, S.R., and Golberg, D., J. Am. Chem. Soc. 124, 14550 (2002).Google Scholar
35.Yoshiyuki, M. and Tokyo, M., European Patent 0945884, European Patents Office (1999).Google Scholar
36.Powers, M.J., Benjamin, M.C., Porter, L.M., Nemanich, R.J., Davis, R.F., Cuomo, J.J., Doll, G.L., and Harris, S.J., Appl. Phys. Lett. 67, 3912 (1995).Google Scholar
37.Sugino, T., Yamamoto, T., Kimura, C., Murakami, H., and Hirakawa, M., Appl. Phys. Lett. 80, 3808 (2002).Google Scholar
38.Sugino, T., Kimura, C., and Yamamoto, T.. Appl. Phys. Lett. 80, 3602 (2002).Google Scholar
39.Sun, M.L., Slanina, Z., and Lee, S.L., Chem. Phys. Lett. 233, 279 (1995).Google Scholar
40.Bengu, E. and Marks, L.D., Phys. Rev. Lett. 86, 2385 (2001).CrossRefGoogle Scholar