Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:32:11.345Z Has data issue: false hasContentIssue false

Structural, Morphological and Photoelectrochemical Behavior of Hematite Modified by 120 MeV Ag9+ Ions

Published online by Cambridge University Press:  31 January 2011

Aadesh P. Singh
Affiliation:
aadshp1982@gmail.com, Dyalbagh Educational Institute, Department of Physics & Computer Science, Agra, Uttar Pradesh, India
Saroj Kumari
Affiliation:
kamalsaroj2020@gmail.com, Dyalbagh Educational Institute, Department of Physics & Computer Science, Agra, India
Rohit Shrivastav
Affiliation:
vibhasatsangi@rediffmail.com, Dyalbagh Educational Institute, Department of Chemistry, Agra, Uttar Pradesh, India
Sahab Dass
Affiliation:
aadshp_1982@yahoo.co.in, Dyalbagh Educational Institute, Department of Chemistry, Agra, India
Vibha R. Satsangi
Affiliation:
vibhasatsangi@gmail.com, Dyalbagh Educational Institute, Department of Physics & Computer Science, Agra, Uttar Pradesh, India
Get access

Abstract

Nanostructured hematite thin film for photoelectrochemical (PEC) splitting of water has great potential in the design of low-cost, environmental friendly solar-hydrogen production. Presently, solar-to-hydrogen conversion efficiency of PEC cell using iron oxide is limited by its poor charge transport due to high recombination losses and mismatch of band edges position with the redox level of water. High energy heavy ion irradiation provides the researchers a new dimension to introduce the desired changes in the behaviour of the material, which largely influence their properties. In order to get efficient PEC system, spray-pyrolytically deposited nanostructured hematite thin films were modified by irradiating the samples with 120 MeV Ag9+ ions with fluences ranging from 5×1011 to 1×1013 ions/cm2. Irradiated samples exhibited a partial transition from the hematite to the magnetite phase and reduction in particle size as indicated by XRD and Raman analysis. SEM picture showed a decrease the thickness and porosity of the films after irradiation. These irradiated films, when used in PEC cell showed significantly higher photocurrent density than unirradiated α-Fe2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Satsangi, V. R., Kumari, S., Singh, A. P., Shrivastav, R. and Dass, S., Int. J. of Hydrogen Energy, 33, 312 (2008).Google Scholar
2 Katharria, Y. S., Kumar, S., Singh, F., Pivin, J. C. and Kanjilal, D., J. Phys. D: Appl. Phys., 39, 3969 (2006)Google Scholar
3 Iwase, A., Sasaki, S., Iwata, T., and Nihira, T., Phys. Rev. Lett. 58, 2450 (1987).Google Scholar
4 Bauer, P., Dufour, C., Jaouen, C., Marchal, G., Pacaud, J., Grilhe, J. and Jousset, J. C., J. Appl. Phys. 81, 116 (1997).Google Scholar
5 Lindgren, T., Wang, H. L., Beermann, N., Vayssieres, L., Hagfeldt, A. and Lindquist, S. E., Sol. Energy Mater. Sol. Cells 71, 231 (2002).Google Scholar
6 Nozik, A. J. and Memming, R., J. Phys. Chem. 100, 13061 (1996).Google Scholar
7 Björkstén, U., Moser, J. and Grätzel, M., Chem. Mater. 6, 858 (1994).Google Scholar
8 Kennedy, J. H. and Frese, K.W. Jr. , J. Electrochem. Soc. 125, 709 (1978).Google Scholar
9 Ingler, W. B. Jr. , Baltrus, J. P. and Khan, S. U. M., J. Am. Chem .Soc. 126, 10238 (2004).Google Scholar
10 Aroutiounian, V. M., Arakelyan, V. M., Shahnazaryan, G. E., Stepanyan, G. M., Turner, J. A. and Khaselev, O., Int. J. Hydrogen Energy 27, 33 (2002).Google Scholar
11 Kumari, S., Tripathi, C., Singh, A. P., Chauhan, D., Shrivastav, R., Dass, S. and Satsangi, V. R., Current Science 91, 1062 (2006).Google Scholar
12 Faria, D. L. A. de, Silva, S. Venâncio and Oliveira, M. T. de, J. Raman Spectrosc. 28, 873 (1997).Google Scholar
13 Benyagou, A., Levesque, F., Couvreur, F., Gibert-Mougel, C., Dufour, C. and Paumier, E., Appl. Phys. Lett. 77, 3197 (2000).Google Scholar
14 Sickafus, K. E., Matzke, Hj., Hartmann, Th., Yasuda, K., Valdez, J. A., Chodak, P. III , Nastasi, M., and Verrall, R. A., J. Nucl. Mater. 274, 66 (1999).Google Scholar
15 Das, V. D. and Damodare, L., Solid State Comm. 99, 723 (1996).Google Scholar
16 Merchant, P., Collins, R., Kershaw, R., Dwight, K., and Wold, A., J. Solid State Chem. 27, 307 (1979).Google Scholar
17 Sanchez, C., Hendewerk, M., Sieber, K.D., and Samorjal, G. A., J. Solid State Chem. 61, 47 (1986).Google Scholar