Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T02:54:42.332Z Has data issue: false hasContentIssue false

Study of Near-Threshold Gain Mechanisms in MOCVD-Grown GaN Epilayers and InGaN/GaN Heterostructures

Published online by Cambridge University Press:  10 February 2011

S. Bidnyk
Affiliation:
Oklahoma State Univ., Center for Laser and Photonics Research and Dept. of Physics, Stillwater, OK.
T. J. Schmidt
Affiliation:
Oklahoma State Univ., Center for Laser and Photonics Research and Dept. of Physics, Stillwater, OK.
B. D. Little
Affiliation:
Oklahoma State Univ., Center for Laser and Photonics Research and Dept. of Physics, Stillwater, OK.
J. J. Song
Affiliation:
Oklahoma State Univ., Center for Laser and Photonics Research and Dept. of Physics, Stillwater, OK.
Get access

Abstract

We report the results of an experimental study on near-threshold gain mechanisms in optically pumped GaN epilayers and InGaN/GaN heterostructures at temperatures as high as 700 K. We show that the dominant near-threshold gain mechanism in GaN epilayers is inelastic excitonexciton scattering for temperatures below ∼ 150 K, characterized by band-filling phenomena and a relatively low stimulated emission (SE) threshold. An analysis of both the temperature dependence of the SE threshold and the relative shift between stimulated and band-edge related emission indicates electron-hole plasma is the dominant gain mechanism for temperatures exceeding 150 K. The dominant mechanism for SE in InGaN epilayers and InGaN/GaN multiple quantum wells was found to be the recombination of carriers localized at potential fluctuations resulting from nonuniform indium incorporation. The SE spectra from InGaN epilayers and multiple quantum wells were comprised of extremely narrow emission lines and no spectral broadening of the lines was observed as the temperature was raised from 10 K to over 550 K. Based on the presented results, we suggest a method for significantly reducing the carrier densities needed to achieve population inversion in GaN, allowing for the development of GaNactive-medium laser diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dingle, R., Shaklee, K. L., Leheny, R. F., and Zetterstrom, R. B., Appl. Phys. Lett. 19, 5 (1971)10.1063/1.1653730Google Scholar
2. Bidnyk, S., Little, B. D., Schmidt, T. J., Cho, Y. H., Krasinski, J., Song, J. J., Goldenberg, B., Yang, W., Perry, W. G., Bremser, M. D., and Davis, R. F., J. Appl. Phys. 85, 1792(1999)10.1063/1.369325Google Scholar
3. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997)10.1007/978-3-662-03462-0Google Scholar
4. Amano, H. and Akasaki, I., Proc. Topical Workshop on JII-VNitrides, 193, Nagoya, Japan (1995)Google Scholar
5. Catalano, I. M., Cingolani, A., Ferrara, M., Lugard, M. and Minafra, A., Solid State Comm. 25, 349(1978)10.1016/0038-1098(78)90974-2Google Scholar
6. Holst, J., Eckey, L., Hoffman, A., Broser, I., Schdttker, B., As, D. J., Schikora, D., and Lischka, K., Appl. Phys. Lett. 72, 1439(1998)10.1063/1.120588Google Scholar
7. Schmidt, T. J., Bidnyk, S., Cho, Yong-Hoon, Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 3689(1998), and references therein.10.1063/1.122864Google Scholar
8. Bidnyk, S., Schmidt, T. J., Little, B. D., and Song, J. J., Appl. Phys. Lett. 74, 1 (1999)10.1063/1.123114Google Scholar
9. Bidnyk, S., Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 72, 1623(1998)10.1063/1.121133Google Scholar
10. Fischer, A. J., Shan, W., Song, J. J., Chang, Y. C., Homing, R., and Goldenberg, B., Appl. Phys. Lett. 71, 1981(1997)10.1063/1.119761Google Scholar
11. Galbraith, I. and Koch, S. W., J. Crystal Growth 159, 667(1996)10.1016/0022-0248(95)00862-4Google Scholar
12. Schmidt, T. J., Song, J. J., Chang, Y. C., Homing, R., and Goldenberg, B., Appl. Phys. Lett. 72 (1998)10.1063/1.121040Google Scholar
13. Shan, W., Little, B. D., Fischer, A. J., Song, J. J., Goldenberg, B., Perry, W. G., Bremser, M. D., and Davis, R. F., 16369 (1996)10.1103/PhysRevB.54.16369Google Scholar
14. Levy, R. and Grun, J. B., Phys. Stat. Sol. (a) 22, 11(1974)10.1002/pssa.2210220102Google Scholar
15. Yang, X. H., Hays, J. M., Shan, W., Song, J. J., and Cantwell, E., Appl. Phys. Lett. 62, 1071(1992)10.1063/1.108798Google Scholar
16. Jeon, H., Ding, J., Nurmikko, A. V., Luo, H., Samarth, N., and Furdyna, J. K., Appl. Phys. Let. 57, 2413 (1990)10.1063/1.103862Google Scholar