Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T15:46:07.068Z Has data issue: false hasContentIssue false

Development of Electrochemical Copper Deposition Screening Methodologies for Next Generation Additive Selection

Published online by Cambridge University Press:  10 August 2011

Kevin Ryan
Affiliation:
College of Nanoscale Science and Engineering at SUNY Albany, 255 Fuller Rd, Albany, NY 12222, U.S.A.
Kathleen Dunn
Affiliation:
College of Nanoscale Science and Engineering at SUNY Albany, 255 Fuller Rd, Albany, NY 12222, U.S.A.
Jobert van Eisden
Affiliation:
Atotech USA, 255 Fuller Rd, Albany, NY 12222, U.S.A.
Get access

Abstract

To reduce time-to-knowledge and costs associated with wafer scale processing a laboratory scale copper electrochemical deposition (ECD) system was developed for screening new organic additives which promote bottom-up fill in interconnect trenches and vias. This new setup enables working process conditions and functionality trends to be identified for open source and proprietary suppressors and levelers at leading edge feature sizes (sub 50nm). The laboratory results can then be compared to the in-line wafer scale plating tool results to ensure their compatibility. A reliable laboratory setup that can mimic the dynamic conditions found inside the wafer scale plating tool will enable the main objective of this work to be efficiently realized. The main objective is to test two previously published models describing copper fill inside the trenches by bridging the gap between fundamental electrochemical measurements and wafer scale plating results. To date this work will focus on the reliability and transferability of plating results between the laboratory setup and a wafer scale plating tool and present preliminary data using gap fill and bottom-up growth ratio as performance metrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Mostiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schultz, R., Su, L., Luce, S., and Slattery, J., Tech. Dig. Int. Electron Devices Meet., 1997, 773.Google Scholar
2. Venkatesan, S., Gelatos, A. V., Misra, V., Islam, R., Smith, B., Cope, J., Wilson, B., Tuttle, D., Cardwell, R., Yang, I., Gilbert, P. V., Woodruff, R., Bajaj, R., Das, S., Farkas, J., Watts, D., King, C., Crabtree, P., Sparks, T., Lii, T., Simpson, C., Jain, A., Herrick, M., Capasso, C., Anderson, S., Venkatraman, R., Filipiak, S., Flordalice, B., Reid, K., Klein, J., Weitzman, E. J., and Kawasaki, H., Tech. Dig. Int. Electron Devices Meet., 1997, 769.Google Scholar
3. Andricacos, P. C., Uzoh, C., Dukovic, J., Horkans, J., and Deligianni, L., IBM J. Res. Dev., 42, 567 (1998).Google Scholar
4. Dubin, V. M., Akolkar, R., Cheng, C. C., Chebiam, R., Fajardo, A., and Gstrein, F., Electorchimica Acta, 52, 2891 (2007).Google Scholar
5. Taephaisitphongse, P., Cao, Y., and West, A. C., J. Electrochem. Soc., 148, 492 (2001).Google Scholar
6. West, A. C., J. Electrochem. Soc., 147, 227 (2000).Google Scholar
7. Josell, D., Moffat, T. P., and Wheeler, D., J. Electrochem. Soc., 154, 208 (2007).Google Scholar
8. Cao, Y., Taephaisitphongse, P., Chalupa, R., and West, A. C., J. Electrochem. Soc., 148, 466 (2001).Google Scholar
9. Alkokar, R. and Landau, U., J. Electrochem. Soc., 151, 702 (2004).Google Scholar
10. Takahashi, K. M. and Gross, M. E., J. Electrochem. Soc., 146, 4499 (1999).Google Scholar
11. Georgiadou, M., Veyret, D., Sani, R. L., and Alkire, R. C., J. Electrochem. Soc., 148, 54 (2001).Google Scholar
12. West, A. C., Mayer, S., and Reid, J., Electrochem. Solid-State Lett., 4, 50 (2001).Google Scholar
13. Madore, C., Matlosz, M., and Landolt, D., J. Electrochem. Soc., 143, 3927 (1996).Google Scholar
14. Madore, C. and Landolt, D., J. Electrochem. Soc., 143, 3936 (1996).Google Scholar
15. Tan, M. and Harb, J. N., J. Electrochem. Soc., 150, 420 (2003).Google Scholar
16. West, M. et al. , AIP Conf. Proc., 683, 504 (2003).Google Scholar
17. Moffat, T. P., Bonevich, J. E., Huber, W. H., Stanishevsky, A., Kelly, D. R., Stafford, G. R., and Josell, D., J. Electrochem. Soc., 147, 4524 (2000).Google Scholar
18. Stangl, M., Acker, J., Oswald, S., Uhlemann, M., Gemming, T., Baunack, S., and Wetzig, K., Microelectronic Eng., 84, 54 (2007).Google Scholar
19. Hu, C-K., Gignac, L., Malhotra, S. G., and Rosenberg, R., App. Physics Lett., 78, 904 (2001).Google Scholar
20. Hu, C-K., Gignac, L., and Rosenberg, R., Microelectronics Reliability, 46, 213 (2006).Google Scholar
21. Lloyd, J. R., Clement, J. J., Thin Solid Films, 262, 135 (1995).Google Scholar
22. Graham, Lyndon, et al. , J. Electrochem. Soc., 149, 390 (2002).Google Scholar