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We study the notion of purity for additive categories that are locally finitely
presented. A typical example is the category of modules over a ring. We are
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378 Purity

mostly interested in pure-injective objects; they enjoy decomposition properties
that are analogous to those of injective objects in Grothendieck categories.

A basic idea is to assign to a locally finitely presented category A an essen-
tially small abelian category Ab(A) such that the objects in A identify with
exact functors Ab(A)op → Ab. For instance, when A = ModΛ is the category
of modules over a ring Λ, then Ab(A) equals the free abelian category Ab(Λ)
over Λ.

Viewing objects of A as exact functors leads naturally to the notion of a
definable subcategory of A if we consider all exact functors which vanish on a
specific Serre subcategory of Ab(A). In particular, we see that any such defin-
able subcategory is determined by its indecomposable pure-injective objects.

12.1 Purity

In this section we introduce for locally finitely presented categories the notion
of purity. This is based on the concept of a pure-exact sequence, and there
are several ways to define this. For example, a sequence is pure-exact if it is a
filtered colimit of split exact sequences. We can embed any locally finitely pre-
sented category A into a Grothendieck category P(A) such that pure-exactness
identifies with the usual notion of exactness in abelian categories. We call this
the purity category of A. From this embedding we deduce that every object
admits a pure-injective envelope.

From Left Exact to Exact Functors
Let A be a locally finitely presented category and set C = fpA. We introduce
the embedding A ↩→ P(A) into a Grothendieck category, which is our main
tool.

A functor 𝐹 : C→ Ab is finitely presented if it admits a presentation

HomC (𝐷,−) −→ HomC (𝐶,−) −→ 𝐹 −→ 0. (12.1.1)

We denote by Fp(C,Ab) the category of finitely presented functors and observe
that Fp(C,Ab) is abelian since C admits cokernels.

A functor 𝐹 in Fp(C,Ab) induces the functor

�̄� : A −→ Ab, 𝑋 ↦→ colim
(𝐶,𝜙) ∈C/𝑋

𝐹 (𝐶)

using the presentation (11.1.17) of 𝑋 as a filtered colimit of finitely presented
objects. A presentation (12.1.1) of 𝐹 then yields the presentation

HomA(𝐷,−) −→ HomA(𝐶,−) −→ �̄� −→ 0. (12.1.2)
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12.1 Purity 379

Remark 12.1.3. A functor of the form �̄� : A → Ab with 𝐹 ∈ Fp(C,Ab)
preserves filtered colimits and products. This is clear when �̄� = HomA(𝐶,−)

for some 𝐶 ∈ fpA, and the general case follows from the presentation (12.1.2);
for a converse see Corollary 12.2.11.

For 𝑋 ∈ A we consider the evaluation

�̄� : Fp(C,Ab) −→ Ab, 𝐹 ↦→ �̄� (𝑋).

Clearly, the functor �̄� is exact when 𝑋 ∈ C, and �̄� = colim �̄�𝑖 is exact when
𝑋 = colim 𝑋𝑖 , since taking filtered colimits is exact. This yields the functor

ev : A −→ P(A) := Lex(Fp(C,Ab),Ab), 𝑋 ↦→ �̄� .

The category P(A) is by definition the purity category of A. It is a locally
finitely presented Grothendieck category and the finitely presented objects
form an abelian category that is equivalent to Fp(C,Ab)op.

Let us collect some basic properties of this evaluation functor. We write
Ex(Fp(C,Ab),Ab) for the category of exact functors Fp(C,Ab) → Ab.

Lemma 12.1.4. The functor ev: A → P(A) is fully faithful and induces an
equivalence

A ∼−−→ Ex(Fp(C,Ab),Ab).

Moreover, the functor preserves filtered colimits, products, and cokernels.

Proof First observe that �̄� is an exact functor for any 𝑋 ∈ A, since evaluation
is exact. When we identify A = Lex(Cop,Ab), then the quasi-inverse functor

Ex(Fp(C,Ab),Ab) −→ A

sends 𝐹 to 𝐹 ◦ ℎ, where

ℎ : Cop −→ Fp(C,Ab), 𝐶 ↦→ HomC (𝐶,−)

denotes the Yoneda functor.
For 𝐹 ∈ Fp(C,Ab) the corresponding functor �̄� : A→ Ab preserves filtered

colimits and products. Thus ev preserves filtered colimits and products, since
in P(A) these are computed pointwise. It remains to consider cokernels. For
𝐶 ∈ C we have �̄� = Hom(HomC (𝐶,−),−). Thus the restriction ev |C preserves
cokernels. It follows that ev preserves cokernels, since any cokernel sequence
in A can be written as a filtered colimit of cokernel sequences in C. �

Remark 12.1.5. The categoryA viewed as a subcategory of P(A) is covariantly
finite; this follows from Proposition 11.1.27.
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380 Purity

Pure-Exactness and Pure-Injectives
A sequence of morphisms 0 → 𝑋 → 𝑌 → 𝑍 → 0 in A is called pure-exact if
the induced sequence

0 −→ HomA(𝐶, 𝑋) −→ HomA(𝐶,𝑌 ) −→ HomA(𝐶, 𝑍) −→ 0

of abelian groups is exact for all finitely presented 𝐶 ∈ A. In that case the
morphism 𝑋 → 𝑌 is called a pure monomorphism. An object 𝑄 ∈ A is
pure-injective if every pure monomorphism 𝑋 → 𝑌 induces a surjective map
HomA(𝑌,𝑄) → HomA(𝑋,𝑄).

Lemma 12.1.6. For a sequence of morphisms 𝜂 : 0 → 𝑋 → 𝑌 → 𝑍 → 0 in
A the following are equivalent.

(1) The sequence 𝜂 is pure-exact.
(2) The sequence 𝜂 is a filtered colimit of split exact sequences.
(3) The sequence 𝜂 : 0 → �̄� → 𝑌 → �̄� → 0 is exact in P(A).

Proof (1)⇒ (2): Write 𝑍 = colim 𝑍𝑖 as a filtered colimit of finitely presented
objects. Composing 𝜂 with 𝑍𝑖 → 𝑍 yields a split exact sequence 𝜂𝑖 : 0 → 𝑋 →

𝑌𝑖 → 𝑍𝑖 → 0, and 𝜂 = colim 𝜂𝑖 .
(2) ⇒ (3): The assignment 𝑋 ↦→ �̄� preserves filtered colimits, and in P(A)

a filtered colimit of exact sequences is exact.
(3) ⇒ (1): For 𝐶 ∈ fpA the sequence

0 −→ HomP(A) (�̄�, �̄�) −→ HomP(A) (�̄�,𝑌 ) −→ HomP(A) (�̄�, �̄�) −→ 0

is exact by Lemma 11.1.26. Thus 𝜂 is pure-exact. �

Lemma 12.1.7. A morphism 𝑋 → 𝑌 in A is a pure monomorphism if and only
if �̄� → 𝑌 is a monomorphism in P(A).

Proof Complete the morphism 𝛼 : 𝑋 → 𝑌 to an exact sequence 𝑋 𝛼
−→ 𝑌 →

𝑍 → 0 in A. If 𝛼 is a pure monomorphism, then �̄� is a monomorphism by
Lemma 12.1.6. Conversely, if �̄� is a monomorphism, then the sequence 0 →
�̄�

�̄�
−→ 𝑌 → �̄� → 0 in P(A) is exact, since ev is right exact by Lemma 12.1.4.

Thus 𝛼 is a pure monomorphism by Lemma 12.1.6. �

Lemma 12.1.8. The functor ev: A→ P(A) identifies the pure-injective objects
in A with the injective objects in P(A).

Proof An injective object in P(A) is of the form �̄� for some 𝑋 ∈ A by
Lemma 11.1.26 and Lemma 12.1.4. Clearly, 𝑋 is pure-injective, since ev sends
any pure monomorphism in A to a monomorphism in P(A) by Lemma 12.1.7.

Now suppose that 𝑋 ∈ A is pure-injective and choose an injective envelope
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12.1 Purity 381

�̄� : �̄� → 𝑌 in P(A). Then 𝛼 is a pure monomorphism by Lemma 12.1.7, and
therefore a split monomorphism. It follows that �̄� is an injective object. �

A pure monomorphism 𝜙 : 𝑋 → 𝑌 in A is called a pure-injective envelope
of 𝑋 , if 𝑌 is pure-injective and if every endomorphism 𝛼 : 𝑌 → 𝑌 satisfying
𝜙 = 𝛼𝜙 is invertible.

Theorem 12.1.9. Every object 𝑋 ∈ A admits a pure-injective envelope. More-
over, a morphism 𝑋 → 𝑌 is a pure-injective envelope if and only if the induced
morphism �̄� → 𝑌 is an injective envelope in P(A).

Proof Choose a morphism 𝜙 : 𝑋 → 𝑌 such that 𝜙 : �̄� → 𝑌 is an injec-
tive envelope in P(A) (Corollary 2.5.4). Then 𝜙 is a pure monomorphism
by Lemma 12.1.7 and 𝑌 is pure-injective by Lemma 12.1.8. The additional
minimality property for every endomorphism 𝑌 → 𝑌 follows from the cor-
responding characterisation of injective envelopes (Lemma 2.1.19). Clearly, a
pure-injective envelope is essentially unique, and this yields the second part of
the assertion. �

The pure-exact sequences provide an exact structure on A. We give an
application which is a variation of Example 11.1.25.

Example 12.1.10. Let (T,F) be a split torsion pair for fpA. Then ( *T, *F) is
a torsion pair for A and each object 𝑋 ∈ A fits into a pure-exact sequence
0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 with 𝑋 ′ ∈ *T and 𝑋 ′′ ∈ *F.

The Spectrum of Indecomposable Injectives
LetA be a Grothendieck category. We denote by SpA a representative set of the
isomorphism classes of indecomposable injective objects in A (the spectrum
of indecomposable injectives). Note that SpA is a set, because A has a set of
generators and each object in SpA is the injective envelope of 𝑋/𝑈 for some
generating object 𝑋 and some subobject𝑈 ⊆ 𝑋 .

Lemma 12.1.11. Let A be a locally finitely presented Grothendieck category.
Then the objects in SpA form a set of cogenerators for A.

Proof Let 𝑋 ∈ A be a non-zero object. Thus we find 𝐶 ∈ fpA and a non-
zero monomorphism 𝐶/𝑈 → 𝑋 for some subobject 𝑈 ⊆ 𝐶. Using Zorn’s
lemma, we choose a maximal subobject 𝑉 ⊆ 𝐶 containing 𝑈 and an injective
envelope 𝐶/𝑉 → 𝑄. This yields a non-zero morphism 𝑋 → 𝑄. Clearly, 𝑄 is
indecomposable. �
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382 Purity

Our next goal is the definition of a topology on the spectrum of A. We fix
a locally finitely presented Grothendieck category A such that fpA is abelian.
For classes C ⊆ fpA and U ⊆ SpA set

C⊥ = {𝑋 ∈ SpA | HomA(𝐶, 𝑋) = 0 for all 𝐶 ∈ C} ⊆ SpA
⊥U = {𝐶 ∈ fpA | HomA(𝐶, 𝑋) = 0 for all 𝑋 ∈ U} ⊆ fpA.

Lemma 12.1.12. The assignment U ↦→ U := (⊥U)⊥ defines a closure operator
on SpA. Thus the subsets U ⊆ SpA satisfying U = U form the closed subsets
of a topology on SpA.

Proof Following Kuratowski’s axiomatisation of a topological space we need
to verify that

(1) ∅ = ∅,
(2) U ⊆ U for every subset U,

(3) U = U for every subset U,
(4) U1 ∪ U2 = U1 ∪ U2 for every pair of subsets U1 and U2.

The conditions (1)–(3) are easily checked; so it remains to show (4). From
⊥(U1 ∪ U2) ⊆

⊥U1 ∩
⊥U2 it follows that U1 ∪ U2 ⊆ U1 ∪ U2. Now choose

𝑋 ∉ U1 ∪ U2, and we claim this implies 𝑋 ∉ U1 ∪ U2. Choose non-zero
morphisms 𝜙𝑖 : 𝐶𝑖 → 𝑋 with 𝐶𝑖 ∈

⊥U𝑖 . We have Im 𝜙1 ∩ Im 𝜙2 ≠ 0 since 𝑋
is indecomposable. Choosing a finitely generated subobject 0 ≠ 𝑈 ⊆ Im 𝜙1 ∩

Im 𝜙2, there are finitely generated subobjects 𝑈𝑖 ⊆ 𝐶𝑖 such that 𝜙𝑖 (𝑈𝑖) = 𝑈.
We obtain the following commutative diagram with exact rows.

0 𝑉 𝑈1 ⊕ 𝑈2 𝑈

0 𝑊 𝐶1 ⊕ 𝐶2 𝑋

𝛼

The morphisms 𝛼𝑖 : 𝑉 → 𝑈𝑖 are epimorphisms. Thus there are finitely gen-
erated subobjects 𝑉𝑖 ⊆ 𝑉 such that 𝛼𝑖 (𝑉𝑖) = 𝑈𝑖 . Now set 𝐶 = (𝑈1 ⊕

𝑈2)/𝛼(𝑉1 + 𝑉2). We have 𝐶 ∈ fpA since fpA is abelian, and one checks
that HomA(𝐶, 𝑋) ≠ 0. On the other hand, 𝐶 ∈ ⊥(U1 ∪ U2) since 𝐶 is a
quotient of each𝑈𝑖 . Therefore 𝑋 ∉ U1 ∪ U2 and the proof is complete. �

Proposition 12.1.13. Let A be a locally finitely presented Grothendieck cat-
egory and suppose that fpA is abelian. Then the assignments C ↦→ C⊥ and
U ↦→ ⊥U provide mutually inverse and inclusion reversing bijections between
the Serre subcategories of fpA and the closed subsets of SpA.

https://doi.org/10.1017/9781108979108.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.020


12.1 Purity 383

Proof Clearly, both maps are well defined. Let U ⊆ SpA be closed. Then
(⊥U)⊥ = U by definition. Now let C ⊆ fpA be a Serre subcategory. The inclu-
sion C ⊆ ⊥(C⊥) is clear. For the other inclusion we apply Corollary 11.1.33.
Thus *C is a localising subcategory satisfying *C ∩ fpA = C. Furthermore,
C⊥ = *C⊥ and C⊥ identifies with Sp(A/*C). The category A/*C is locally finitely
presented. Thus C = ⊥(C⊥) by Lemma 12.1.11, since *C = ⊥(*C⊥). �

We discuss briefly an alternative closure operation. Let A be a Grothendieck
category and fix U ⊆ SpA. We denote by Û the set of objects 𝑋 ∈ SpA such
that 𝑋 ⊆

∏
𝑖∈𝐼 𝑌𝑖 for some set of objects 𝑌𝑖 ∈ U. Now consider the localising

subcategory AU = {𝑋 ∈ A | HomA(𝑋,U) = 0}. Then we have

Û = {𝑋 ∈ SpA | HomA(AU, 𝑋) = 0}

by Corollary 2.2.18.

Lemma 12.1.14. Let A be a locally noetherian Grothendieck category and
U ⊆ SpA. Then Û = U.

Proof The inclusion Û ⊆ U is automatic since ⊥U ⊆ AU. On the other hand,
AU is generated by ⊥U sinceA is locally noetherian. Thus we have equality. �

Compactness
Let C be an abelian category and X a class of objects in C. We write 𝑆〈X〉 for
the smallest Serre subcategory containing X.

Lemma 12.1.15. If an object 𝑋 ∈ C belongs to 𝑆〈X〉, then 𝑋 ∈ 𝑆〈X0〉 for some
finite set of objects X0 ⊆ X.

Proof The objects in 𝑆〈X〉 are obtained by closing the objects in X under
forming subobjects, quotients, and extensions. For each 𝑋 ∈ 𝑆〈X〉, finitely
many such operations suffice. �

Let us call C finitely generated if C = 𝑆〈𝑋〉 for some object 𝑋 ∈ C. An equiv-
alent condition is the following. For any family (C𝑖)𝑖∈𝐼 of Serre subcategories∨

𝑖∈𝐼 C𝑖 = C implies
∨

𝑖∈𝐽 C𝑖 = C for some finite subset 𝐽 ⊆ 𝐼.
Recall that a topological space 𝑇 is quasi-compact if for any family (𝑈𝑖)𝑖∈𝐼

of open subsets
⋃

𝑖∈𝐼 𝑈𝑖 = 𝑇 implies
⋃

𝑖∈𝐽 𝑈𝑖 = 𝑇 for some finite subset 𝐽 ⊆ 𝐼.

Lemma 12.1.16. Let A be a locally finitely presented Grothendieck category
and suppose that fpA is abelian. For a closed subset V ⊆ SpA and U =
SpA \ V, we have

(1) U is quasi-compact if and only if ⊥V is finitely generated, and
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384 Purity

(2) V is quasi-compact if and only if (fpA)/(⊥V) is finitely generated.

Proof This is an immediate consequence of the correspondence in Proposi-
tion 12.1.13, since for any family (C𝑖)𝑖∈𝐼 of Serre subcategories of fpA( ∨

𝑖∈𝐼

C𝑖

)⊥
=

⋂
𝑖∈𝐼

(C⊥𝑖 ). �

The Spectrum of Indecomposable Pure-Injectives
Let A be a locally finitely presented category and denote by IndA a represen-
tative set of the isomorphism classes of indecomposable pure-injective objects
in A (the spectrum of indecomposable pure-injectives or Ziegler spectrum).

Lemma 12.1.17. Let A be a locally finitely presented category. The functor
ev: A → P(A) induces a bijection IndA ∼−→ Sp P(A). Therefore every object
admits a pure monomorphism into a pure-injective object which is a product of
indecomposable objects.

Proof The first assertion is clear from Lemma 12.1.8. Let 𝑋 ∈ A and consider
the canonical morphism

𝑋 −→
∏

𝑄∈IndA
𝜙∈HomA (𝑋,𝑄)

𝑄.

It follows from Lemma 12.1.7 and Lemma 12.1.11 that this is a pure monomor-
phism. �

We use the identification IndA ∼−→ Sp P(A) and obtain a topology on IndA.
For classes C ⊆ fp P(A) and U ⊆ IndA we set

C⊥ = {𝑋 ∈ IndA | HomP(A) (𝐶, �̄�) = 0 for all 𝐶 ∈ C} ⊆ IndA
⊥U = {𝐶 ∈ fp P(A) | HomP(A) (𝐶, �̄�) = 0 for all 𝑋 ∈ U} ⊆ fp P(A).

Lemma 12.1.18. The assignment U ↦→ U := (⊥U)⊥ defines a closure operator
on IndA. Thus the subsets U ⊆ IndA satisfying U = U form the closed subsets
of a topology on IndA.

Proof Apply Lemma 12.1.12. �

12.2 Definable Subcategories

Let A be a locally finitely presented category. We set

C := fpA and Ab(A) := Fp(C,Ab)op.
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Note that Ab(A) ∼−→ fp P(A) via 𝐹 ↦→ Hom(−, 𝐹); see Theorem 11.1.15. The
category Ab(A) is abelian and A identifies with the category of exact functors
Ab(A)op → Ab via the assignment 𝑋 ↦→ �̄�; see Lemma 12.1.4. The kernel of
any exact functor �̄� is a Serre subcategory of Ab(A) and therefore a natural
invariant of 𝑋 .

In this section we study the class of definable subcategories of A. The
terminology is justified by the fact that any definable subcategory is given by
a family of morphisms in C. Observe that a morphism 𝜙 in C yields a functor
𝐹 = Coker HomC(𝜙,−) in Fp(C,Ab), and for 𝑋 ∈ A we have

�̄� (𝑋) = 0 ⇐⇒ HomA(𝜙, 𝑋) is surjective ⇐⇒ �̄� (𝐹) = 0.

Definable Subcategories
A full subcategory B ⊆ A is called definable if it is of the form

B = {𝑋 ∈ A | HomA(𝜙𝑖 , 𝑋) is surjective for all 𝑖 ∈ 𝐼}

for a family of morphisms (𝜙𝑖)𝑖∈𝐼 in fpA; thus it is ‘defined’ by the 𝜙𝑖 . Similarly,
a subset U ⊆ IndA is Ziegler closed if there is a family (𝜙𝑖)𝑖∈𝐼 of morphisms
in fpA such that

U = {𝑋 ∈ IndA | HomA(𝜙𝑖 , 𝑋) is surjective for all 𝑖 ∈ 𝐼}.

Let us consider the pairing

Fp(C,Ab) ×A −→ Ab, (𝐹, 𝑋) ↦→ �̄� (𝑋) = �̄� (𝐹).

For classes F ⊆ Fp(C,Ab) and X ⊆ A we set

F⊥ = {𝑋 ∈ A | �̄� (𝑋) = 0 for all 𝐹 ∈ F} ⊆ A

⊥X = {𝐹 ∈ Fp(C,Ab) | �̄� (𝑋) = 0 for all 𝑋 ∈ X} ⊆ Fp(C,Ab).

The pairing admits another interpretation. To this end identify Fp(C,Ab)
with the full subcategory of finitely presented objects in the purity category
P(A) via the Yoneda embedding 𝐹 ↦→ Hom(𝐹,−). Then we have for all 𝑋 ∈ A

�̄� (𝑋) � HomP(A) (𝐹, �̄�).

Lemma 12.2.1. The following holds.

(1) F⊥ is a definable subcategory of A.
(2) ⊥X is a Serre subcategory of Fp(C,Ab).
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386 Purity

Proof (1) For 𝐹 = Coker HomC (𝜙,−) in F, we have �̄� (𝑋) = 0 if and only if
HomA(𝜙, 𝑋) is surjective. Thus F⊥ is a definable subcategory for any choice
of F.

(2) The assignment 𝐹 ↦→ �̄� (𝑋) is exact for fixed 𝑋 ∈ A. Thus ⊥X is a Serre
subcategory for any choice of X. �

We obtain for X ⊆ A an abelian category by forming the quotient

Ab(A) � Ab(X) := (Fp(C,Ab)/⊥X)op.

Note that any inclusion X′ ⊆ X induces an exact functor Ab(X) � Ab(X′).
There is the following fundamental correspondence for definable subcate-

gories.

Theorem 12.2.2. Let A be a locally finitely presented category.

(1) The assignments F ↦→ F⊥ and X ↦→ ⊥X provide mutually inverse and
inclusion reversing bijections between the Serre subcategories of Ab(A)
and the definable subcategories of A.

(2) The assignment

A ⊇ B ↦−→ B ∩ IndA ⊆ IndA

provides an inclusion preserving bijection between the definable subcate-
gories of A and the Ziegler closed subsets of IndA.

The first part of Theorem 12.2.2 has an immediate consequence.

Corollary 12.2.3. For a definable subcategory B ⊆ A the assignment 𝑋 ↦→ �̄�

(Lemma 12.1.4) induces the following commutative square

B Ex(Ab(B)op,Ab)

A Ex(Ab(A)op,Ab)

∼

∼

where the inclusion on the right is induced by composing with the canonical
functor Ab(A) � Ab(B).

Proof Let S ⊆ Fp(C,Ab) be a Serre subcategory. Then the exact functors
Fp(C,Ab) → Ab that vanish on S identify with the exact functors Fp(C,Ab)

S
→

Ab; see Proposition 11.1.31. �

Proof of Theorem 12.2.2 (1) It is convenient to work in the purity category
P(A) and we identify Fp(C,Ab) with the full subcategory of finitely presented
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objects in P(A) via the Yoneda embedding 𝐹 ↦→ Hom(𝐹,−). Then we have
for all 𝑋 ∈ A

�̄� (𝑋) � HomP(A) (𝐹, �̄�).

We use the bijection IndA ∼−→ Sp P(A) from Lemma 12.1.17 and combine
this with the bijection from Proposition 12.1.13. Thus the assignments F ↦→

F⊥ ∩ IndA and U ↦→ ⊥U provide mutually inverse and inclusion reversing
bijections between the Serre subcategories of Fp(C,Ab) and the Ziegler closed
subsets of IndA.

Fix a Serre subcategory S of Fp(C,Ab). Then the above bijections imply
S = ⊥(S⊥).

Now fix a definable subcategory B = F⊥ of A, which is given by some
F ⊆ Fp(C,Ab). Let S ⊆ Fp(C,Ab) denote the smallest Serre subcategory
containing F. Clearly, B = S⊥. Thus we have

(⊥B)⊥ = (⊥(S⊥))⊥ = S⊥ = B,

where one uses the equality S = ⊥(S⊥) from the first part of the proof.
(2) The assertion claims that a definable subcategory B is determined by

B ∩ IndA. This follows from (1). In fact, B identifies with Ex(Ab(B)op,Ab)
as in Corollary 12.2.3, and it remains to observe that B ∩ IndA identifies with
the indecomposable injective objects in Lex(Ab(B)op,Ab), which form a set
of cogenerators; see Lemma 12.1.11. �

Closure Properties of Definable Subcategories
Definable subcategories are characterised by some natural closure properties.
The proof of this requires some preparations.

Lemma 12.2.4. A filtered colimit colim𝑖∈I 𝑋𝑖 and a family of monomorphisms
(𝑋𝑖 → 𝑌𝑖)𝑖∈I in a Grothendieck category induce a monomorphism

colim
𝑖∈I

𝑋𝑖 −→ colim
𝑖∈I

( ∏
𝑖→ 𝑗

𝑌 𝑗

)
.

Proof For each 𝑖 ∈ I we have a canonical monomorphisms 𝑋𝑖 →
∏

𝑖→ 𝑗 𝑌 𝑗 ,
where 𝑖 → 𝑗 runs through all morphisms in I starting at 𝑖 and each component
is given by the composite 𝑋𝑖 → 𝑋 𝑗 → 𝑌 𝑗 . A morphism 𝑖 → 𝑖′ in I yields a
commuting square.

𝑋𝑖
∏

𝑖→ 𝑗 𝑌 𝑗

𝑋𝑖′
∏

𝑖′→ 𝑗′ 𝑌 𝑗′
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Taking colimits yields the desired morphism, which is a monomorphism since
filtered colimits preserve monomorphisms. �

Theorem 12.2.5. A full subcategory of a locally finitely presented category is
definable if and only if it is closed under taking products, filtered colimits, and
pure subobjects.

Proof LetA be a locally finitely presented category. As before, it is convenient
to work in P(A) and we identify Fp(C,Ab) with the full subcategory of finitely
presented objects in P(A).

One direction is clear, since for any 𝐹 ∈ Fp(C,Ab), the functor �̄� : A →

Ab preserves filtered colimits, products, and sends pure monomorphisms to
monomorphisms. This follows easily from the presentation (12.1.2).

Now suppose that B ⊆ A is closed under taking products, filtered colimits,
and pure subobjects. Set

F = {𝑋 ∈ P(A) | 𝑋 ⊆ 𝑌 for some 𝑌 ∈ B}

and
T = {𝑋 ∈ P(A) | HomP(A) (𝑋,𝑌 ) = 0 for all 𝑌 ∈ B}.

We claim that this gives a torsion pair (T,F) for P(A). First observe that F
is closed under filtered colimits, by Lemma 12.2.4. The inclusion F ↩→ P(A)
has a left adjoint 𝑓 : P(A) → F which is constructed as follows. For 𝑋 ∈ P(A)
let (𝑌𝑖)𝑖∈𝐼 be the set of quotient objects of 𝑋 which are in F. Define 𝑓 (𝑋) to
be the image and 𝑡 (𝑋) the kernel of the canonical morphism 𝑋 →

∏
𝑖∈𝐼 𝑌𝑖 .

Next observe that S = T ∩ fp P(A) is a Serre subcategory of fp P(A). We write
T′ = *S for the full subcategory consisting of the filtered colimits colim 𝑋𝑖 with
𝑋𝑖 ∈ S for all 𝑖. We claim that T′ = T.

For each 𝑋 ∈ fp P(A) we show that 𝑡 (𝑋) ∈ T′. To this end write 𝑡 (𝑋) =
colim𝑈𝑖 as filtered colimit of its finitely generated subobjects. We need to
show that 𝑈𝑖 ∈ S for all 𝑖. Suppose that 𝑈 = 𝑈𝑖 ∉ S. Then there is a non-zero
morphism 𝜙 : 𝑈 → 𝑌 for some𝑌 ∈ B, and 𝜙 extends to a morphism 𝜓 : 𝑋 → 𝑌

since𝑌 is an exact functor; see Lemma 12.1.4. But the adjointness property of 𝑓
implies that 𝜓 factors through 𝑋 → 𝑓 (𝑋). Therefore 𝜙(𝑈) = 0, a contradiction
to our assumption. Thus 𝑡 (𝑋) ∈ T′. Now let 𝑋 = colim 𝑋𝑖 be an arbitrary object
in P(A), written as a filtered colimit of objects in fp P(A). We obtain an exact
sequence

0 −→ colim 𝑡 (𝑋𝑖) −→ colim 𝑋𝑖 −→ colim 𝑓 (𝑋𝑖) −→ 0

with colim 𝑡 (𝑋𝑖) ∈ T′ and colim 𝑓 (𝑋𝑖) ∈ F, since both T′ and F are closed un-
der filtered colimits. We conclude that T′ = T and (T,F) is a torsion pair. Thus
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for 𝑋 ∈ Awe have 𝑋 ∈ B if and only if �̄� ∈ F if and only if HomP(A) (S, �̄�) = 0
if and only if 𝑋 ∈ S⊥. It follows that B is definable. �

Example 12.2.6. Let A be a locally finitely presented category and C ⊆ fpA
a full additive subcategory. Then *C is a definable subcategory of A if and only
if C is covariantly finite in fpA.

Proof For any C, it is easily checked that *C is closed under filtered colimits
and pure subobjects. Thus it remains to check when *C is closed under products;
see Example 11.1.24. �

Let us mention another important property of definable subcategories.

Proposition 12.2.7. A definable subcategory of a locally finitely presented
category is covariantly finite.

Proof Let B ⊆ A be a definable subcategory. We use the identification
B ∼−→ Ex(Ab(B)op,Ab) from Corollary 12.2.3 and view this as a subcategory
of A via the canonical functor 𝑝 : Ab(A) � Ab(B). Now observe that

Lex(Ab(B)op,Ab) ⊆ Lex(Ab(A)op,Ab)

is covariantly finite, since the restriction 𝑝∗ admits a left adjoint; see Proposi-
tion 11.1.31. On the other hand,

Ex(Ab(B)op,Ab) ⊆ Lex(Ab(B)op,Ab)

is covariantly finite by Proposition 11.1.27.
Let 𝑋 be an object inA, viewed as an exact functor Ab(A)op → Ab. Compose

the approximations 𝑋 → 𝑋LexB and 𝑋LexB → 𝑋ExB, which are obtained from
the above inclusions. This gives a left B-approximation of 𝑋 . �

We add one more closure property of definable subcategories.

Proposition 12.2.8. A definable subcategory of a locally finitely presented
category is closed under taking pure-injective envelopes.

Proof Let B ⊆ A be a definable subcategory. As before, we use the iden-
tification B ∼−→ Ex(Ab(B)op,Ab) from Corollary 12.2.3 and view this as a
subcategory of A via the canonical functor Ab(A) � Ab(B). Also, we use
that pure-injectives in A identify with injectives in Lex(Ab(A)op,Ab), by
Lemma 12.1.8. Then the assertion follows from the fact that

Lex(Ab(B)op,Ab) ⊆ Lex(Ab(A)op,Ab)

is closed under taking injective envelopes; see Corollary 2.2.15 and Proposi-
tion 11.1.31. �
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Change of Categories
We study functors between locally finitely presented categories. For any lo-
cally finitely presented category A we use the canonical identification A =
Ex(Ab(A)op,Ab); see Lemma 12.1.4. Now let A and B be locally finitely
presented categories. Then an exact functor 𝑓 : Ab(B) → Ab(A) induces a
functor 𝑓 ∗ : A→ B by sending 𝑋 ∈ A to 𝑋 ◦ 𝑓 .

Theorem 12.2.9. For a functor 𝐹 : A → B between locally finitely presented
categories the following are equivalent.

(1) 𝐹 preserves filtered colimits and products.
(2) 𝐹 � 𝑓 ∗ for some exact functor 𝑓 : Ab(B) → Ab(A).

Moreover, in this case 𝐹 preserves pure-injectivity, and 𝐹 is fully faithful if and
only if 𝑓 induces an equivalence Ab(B)/(Ker 𝑓 ) ∼−→ Ab(A).

Proof One implication is clear since 𝑓 ∗ preserves limits and colimits. Thus
we assume that 𝐹 preserves filtered colimits and products. The functor 𝑓 is con-
structed as follows. The restriction 𝐹 |fpA : fpA→ B ↩→ P(B) extends to a left
exact functor fp P(A) → P(B), and this extends to a filtered colimit preserving
functor �̄� : P(A) → P(B). Note that �̄� extendsA 𝐹

−→ B ↩→ P(B). Also �̄� is left
exact, since an exact sequence in P(A) can be written as a filtered colimit of ex-
act sequences in fp P(A); see Remark 11.1.20. Moreover, �̄� preserves products
since its restriction to the full subcategory of injective objects preserves prod-
ucts. Thus �̄� preserves limits and therefore has a left adjoint �̄�𝜆 : P(B) → P(A)
by the special adjoint functor theorem [183, Theorem 10.6.5]. Note that �̄�𝜆
restricts to a functor 𝑓 : Ab(B) = fp P(B) → fp P(A) = Ab(A), since �̄� pre-
serves filtered colimits. The functor 𝑓 induces an adjoint pair ( 𝑓!, 𝑓 ∗) = (�̄�𝜆, �̄�)
of functors P(B) � P(A). In particular 𝑓 ∗ |A � 𝐹.

It remains to show that 𝑓 is exact. Observe that a sequence 𝜂 : 0 → 𝐴 →

𝐵→ 𝐶 → 0 in fp P(A) is exact if and only if HomP(A) (𝜂, �̄�) is exact for every
𝑋 ∈ A, since every injective object in P(A) is of the form �̄� for some 𝑋 ∈ A.
Thus if a sequence 𝜂 in fp P(B) is exact, then HomP(B) (𝜂, �̄� ( �̄�)) is exact, and
therefore the sequence HomP(A) ( 𝑓 (𝜂), �̄�) is exact. It follows that 𝑓 is exact.

Having shown that 𝑓 is exact, it follows that 𝑓! is exact, since every exact
sequence in P(B) can be written as a filtered colimit of exact sequences in
fp P(B). Thus its right adjoint 𝑓 ∗ preserves injectivity, and therefore 𝐹 pre-
serves pure-injectivity because of Lemma 12.1.8.

Next we apply Lemma 11.1.30. Thus 𝑓 ∗ : P(A) → P(B) is fully faithful if
and only if 𝑓 induces an equivalence Ab(B)/(Ker 𝑓 ) ∼−→ Ab(A). It remains
to observe that 𝑓 ∗ is fully faithful if and only if its restriction to the full
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subcategories of injective objects is fully faithful; see Lemma 2.1.11. Here we
use again that pure-injectives in A identify with injectives in P(A). �

Remark 12.2.10. Suppose 𝐹 : A→ B preserves filtered colimits and products.
If a subcategory B′ ⊆ B is definable then 𝐹−1 (B′) ⊆ A is definable. On
the other hand, if 𝐹 is fully faithful then 𝐹 maps definable subcategories to
definable subcategories.

A consequence of the theorem is a characterisation of coherent functors,
which is a special case of Theorem 2.5.26.

Corollary 12.2.11. A functor 𝐹 : A → Ab preserves filtered colimits and
products if and only if it admits a presentation

HomA(𝐷,−) −→ HomA(𝐶,−) −→ 𝐹 −→ 0

which is given by a morphism 𝐶 → 𝐷 in fpA.

Proof One direction is clear. Thus we assume that 𝐹 � 𝑓 ∗ for some exact func-
tor 𝑓 : Ab(Ab) → Ab(A). Then 𝑓 (HomZ (Z,−)) is an object in Fp(fpA,Ab)
which yields the presentation of 𝐹. �

Next we consider locally finitely presented categories A𝑖 for 𝑖 = 1, 2 such
that each C𝑖 := fpA𝑖 is abelian. Fix an exact functor 𝑓 : C1 → C2. This in-
duces an adjoint pair ( 𝑓!, 𝑓 ∗) of functors A1 � A2 and also an exact functor
𝑓 : Ab(A1) → Ab(A2). We collect these functors in the following commuta-
tive diagram, where all vertical downward functors are exact.

Ab(A1) P(A1)

C1 A1

Ab(A2) P(A2)

C2 A2

𝑓

𝑓!

𝑓

𝑓 ∗

𝑓! 𝑓 ∗

Lemma 12.2.12. Suppose 𝑓 : C1 → C2 induces an equivalence C1/(Ker 𝑓 ) ∼−→

C2. Then 𝑓 also induces an equivalence Ab(A1)/(Ker 𝑓 ) ∼−→ Ab(A2), and both
𝑓 ∗ and 𝑓 ∗ are fully faithful.

Proof We apply Lemma 11.1.30. If 𝑓 : C1 → C2 induces an equivalence
C1/(Ker 𝑓 ) ∼−→ C2 then 𝑓 ∗ is fully faithful, and therefore also 𝑓 ∗ is fully faithful.

https://doi.org/10.1017/9781108979108.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.020


392 Purity

Restricting the left adjoint 𝑓! to subcategories of finitely presented objects, it
follows that Ab(A1)/(Ker 𝑓 ) ∼−→ Ab(A2). �

12.3 Indecomposable Pure-Injective Objects

In this section we focus on properties of indecomposable pure-injective ob-
jects in locally finitely presented categories. In particular, we investigate when
objects decompose into indecomposable pure-injectives.

We keep our set-up and fix a locally finitely presented category A. We set
C = fpA and Ab(A) = Fp(C,Ab)op, so that objects 𝑋 ∈ A identify with exact
functors �̄� : Ab(A)op → Ab. We set

Ab(𝑋) := Ab(A)/Ker �̄� .

Subgroups of Finite Definition
Fix an object 𝑋 ∈ A. We consider the exact functor

Ab(A) � Ab(𝑋) −→ Mod End(𝑋), 𝐹 ↦→ �̄� (𝑋) = �̄� (𝐹)

and study its image. This leads to the notion of a subgroup of finite definition.
In fact, for each object in fpA the collection of these subgroups forms a lattice
which provides a useful invariant of 𝑋 .

Given a morphism 𝜙 : 𝐶 → 𝐶 ′ in fpA, we denote by 𝑋𝜙 the image of
the induced map Hom(𝐶 ′, 𝑋) → Hom(𝐶, 𝑋) and call it a subgroup of finite
definition of Hom(𝐶, 𝑋). Thus

�̄� (Im Hom(𝜙,−)) = 𝑋𝜙 = Im Hom(𝜙, 𝑋).

Note that any subgroup 𝑋𝜙 of finite definition is an End(𝑋)-submodule.

Lemma 12.3.1. The subgroups of finite definition of Hom(𝐶, 𝑋) are closed
under finite sums and intersections. Thus they form a lattice, which is anti-
isomorphic to the lattice of subobjects of Hom(𝐶,−) in Ab(𝑋).

Proof Given morphisms 𝜙𝑖 : 𝐶 → 𝐶𝑖 (𝑖 = 1, 2) in C, the pushout is given by
an exact sequence 𝐶

𝜙1+𝜙2
−−−−−→ 𝐶1 ⊕ 𝐶2 → 𝐶 ′ → 0. Then

𝑋𝜙1 + 𝑋𝜙2 = 𝑋𝜙1+𝜙2 and 𝑋𝜙1 ∩ 𝑋𝜙2 = 𝑋𝜙

for 𝜙 : 𝐶 → 𝐶𝑖 → 𝐶 ′. Also observe that 𝑋𝜙2 ⊆ 𝑋𝜙1 if 𝑋𝜙2 = 𝑋𝜓𝜙1 for some
𝜓 : 𝐶1 → 𝐶 ′.

Any subobject of Hom(𝐶,−) in Fp(C,Ab) is of the form 𝐹 = Im Hom(𝜙,−)
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for some morphism 𝜙 : 𝐶 → 𝐶 ′. The assignment 𝐹 ↦→ �̄� (𝐹) induces an inclu-
sion preserving map from the lattice of subobjects of Hom(𝐶,−) in Fp(C,Ab)
to the lattice of subgroups of finite definition of Hom(𝐶, 𝑋). Clearly, this is sur-
jective, and for 𝐹 ′ ⊆ 𝐹 we have 𝐹 ′ = 𝐹 in Ab(𝑋) if and only if �̄� (𝐹 ′) = �̄� (𝐹).
Finally note that 𝑋𝜙′ ⊆ 𝑋𝜙 implies Im Hom(𝜙′,−) ⊆ Im Hom(𝜙,−), since we
may assume 𝜙′ = 𝜓𝜙 for some 𝜓. �

Lemma 12.3.2. Given a pure-injective object 𝑋 in A, every cyclic End(𝑋)-
submodule of Hom(𝐶, 𝑋) is the intersection of subgroups of finite definition.

Proof We use the embedding A→ P(A) that takes 𝑋 to �̄� . Let 𝜙 : 𝐶 → 𝑋 be
a morphism and write Ker 𝜙 =

∑
𝑖 𝐾𝑖 as a sum of finiteley generated subobjects

in P(A). For each 𝑖 choose a morphism 𝜙𝑖 : 𝐶 → 𝐶𝑖 with Ker 𝜙𝑖 = 𝐾𝑖 . Then
𝜙 ∈

⋂
𝑖 𝑋𝜙𝑖 . On the other hand, every morphism 𝐶 → 𝑋 in

⋂
𝑖 𝑋𝜙𝑖 necessarily

factors through 𝜙 since 𝑋 is pure-injective. �

Σ-Pure-Injectivity
For a definable subcategory B ⊆ A the abelian category Ab(B) is an important
invariant. We illustrate this by the following result.

Theorem 12.3.3. LetA be a locally finitely presented category. For a definable
subcategory B of A the following are equivalent.

(1) Every object in B is pure-injective.
(2) Every object in B decomposes into a coproduct of indecomposable objects

with local endomorphism rings.
(3) Every object in Ab(B) is noetherian.

Proof We begin with some preparations. Identify B with Ex(Ab(B)op,Ab);
see Corollary 12.2.3. Thus we identify an object 𝑋 ∈ B with the exact functor

�̄� : Ab(A)op � Ab(B)op �̄�B
−−−→ Ab. Set P(B) = Lex(Ab(B)op,Ab) and note

that fp P(B) identifies with Ab(B) by Theorem 11.1.15. Now 𝑋 ∈ B is pure-
injective if and only if �̄� is injective in P(A) if and only if �̄�B is injective in
P(B); see Lemma 12.1.8 and Proposition 11.1.31 plus the subsequent remark.

(1) ⇔ (3): Apply Corollary 11.2.15, which says that all functors of the form
�̄�B are injective if and only if all objects in Ab(B) are noetherian.

(2)⇔ (3): Observe that all objects in Ab(B) are noetherian if and only if P(B)
is locally noetherian; see Proposition 11.2.5. Now apply Theorem 11.2.12. �

An object 𝑋 in A is called Σ-pure-injective if every coproduct of copies of 𝑋
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is pure-injective. A Σ-pure-injective object admits a decomposition into inde-
composable objects. In fact, there is a host of useful properties that characterise
Σ-pure-injectivity.

Theorem 12.3.4. For an object 𝑋 in A the following are equivalent.

(1) The object 𝑋 is Σ-pure-injective.
(2) Every object in Ab(𝑋) is noetherian.
(3) The object 𝑋 is pure-injective and the direct summands of products of

copies of 𝑋 form a definable subcategory.
(4) The canonical monomorphism 𝑋 (N) → 𝑋N splits.
(5) Every product of copies of 𝑋 decomposes into a coproduct of indecompos-

able objects with local endomorphism rings.
(6) There exists an object 𝑌 such that every product of copies of 𝑋 is a pure

subobject of a coproduct of copies of 𝑌 .
(7) The subgroups of finite definition of Hom(𝐶, 𝑋) satisfy the descending

chain condition for every 𝐶 ∈ fpA.

Proof We apply Theorem 12.3.3 by taking for B the smallest definable sub-
category of A containing 𝑋 . In particular, we have Ab(𝑋) = Ab(B). As in the
proof of Theorem 12.3.3, we consider P(B) and characterise the fact that it is
locally noetherian.

(1) ⇒ (2): We adapt the proof of Theorem 11.2.12. The pure-injectivity of
all coproducts of copies of 𝑋 implies that all coproducts of copies of �̄� are
injective in P(B). It follows that all objects in Ab(𝑋) are noetherian.

(2) ⇒ (3): If follows from Theorem 12.3.3 that 𝑋 is pure-injective. In fact,
the object �̄� in P(B) is an injective cogenerator. Thus each 𝑌 ∈ B is a pure
subobject of some product of copies of 𝑋 . The pure monomorphism splits since
𝑌 is pure-injective, again by Theorem 12.3.3.

(3) ⇒ (1): All objects in B are pure-injective. Thus all coproducts of copies
of 𝑋 are pure-injective.

(2)⇔ (4)⇔ (5)⇔ (6): This follows from Proposition 11.2.16 applied to �̄� in
P(B). The assumption on �̄� in this proposition is satisfied by Lemma 11.1.26.

(2) ⇔ (7): Every object in Ab(𝑋) is noetherian if and only if Hom(𝐶,−) is
noetherian in Ab(𝑋) for all 𝐶 ∈ fpA. Now apply Lemma 12.3.1. �

Given an object 𝑋 in A, every subgroup of finite definition of Hom(𝐶, 𝑋) is
an End(𝑋)-submodule. Therefore 𝑋 is Σ-pure-injective, provided Hom(𝐶, 𝑋)
is an artinian module over End(𝑋) for all 𝐶 ∈ fpA. We note the following
partial converse.

https://doi.org/10.1017/9781108979108.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.020


12.3 Indecomposable Pure-Injective Objects 395

Lemma 12.3.5. Let 𝑋 ∈ A be Σ-pure-injective. Then every finitely generated
End(𝑋)-submodule of Hom(𝐶, 𝑋) is a subgroup of finite definition.

Proof It suffices to show this for cyclic submodules since subgroups of finite
definition are closed under finite sums by Lemma 12.3.1. But for cyclic sub-
modules this follows from Lemma 12.3.2 since subgroups of finite definition
of Hom(𝐶, 𝑋) satisfy the descending chain condition by Theorem 12.3.4. �

Example 12.3.6. Let𝑄 be a quiver and 𝑘 a commutative ring. If 𝑋 is a 𝑘-linear
representation such that 𝑋𝑖 is an artinian 𝑘-module for each vertex 𝑖 ∈ 𝑄0, then
𝑋 is Σ-pure-injective.

Proof For a finitely presented representation 𝐶, we have an epimorphism⊕𝑛
𝑗=1 𝑃(𝑖 𝑗 ) → 𝐶 where 𝑃(𝑖1), . . . , 𝑃(𝑖𝑛) is a finite number of standard pro-

jectives corresponding to vertices 𝑖 𝑗 ∈ 𝑄0. We have Hom(𝑃(𝑖), 𝑋) � 𝑋𝑖
for each 𝑖 ∈ 𝑄0. Thus Hom(𝐶, 𝑋) identifies with an End(𝑋)-submodule of⊕𝑛

𝑗=1 𝑋𝑖 𝑗 and is therefore artinian, so satisfies the descending chain condition
for subgroups of finite definition. �

Product-Complete Objects
We consider a particular class of Σ-pure-injective objects. For an object 𝑋
let Add 𝑋 denote the full subcategory consisting of all direct summands of
coproducts of copies of 𝑋 . Analogously, let Prod 𝑋 denote the full subcategory
consisting of all direct summands of products of copies of 𝑋 .

An object satisfying the equivalent conditions of the following proposition
is called product-complete.

Proposition 12.3.7. Let A be a locally finitely presented category. For an
object 𝑋 the following are equivalent.

(1) Prod 𝑋 = Add 𝑋 .
(2) Add 𝑋 is a definable subcategory of A.
(3) 𝑋 is Σ-pure-injective and the indecomposable direct summands of 𝑋 form

a Ziegler closed set.

Proof (1) ⇒ (2): It follows from Theorem 12.3.4 that 𝑋 is Σ-pure-injective.
The same result implies that Add 𝑋 is a definable subcategory.

(2)⇒ (3): As before, Theorem 12.3.4 implies that 𝑋 is Σ-pure-injective. The
indecomposable objects in Add 𝑋 form a Ziegler closed set by Theorem 12.2.2.

(3)⇒ (1): The definable subcategory generated by 𝑋 equals Prod 𝑋 by The-
orem 12.3.4, since 𝑋 is Σ-pure-injective. Since all objects in Prod 𝑋 decompose
into indecomposable objects, it follows that Prod 𝑋 = Add 𝑋 . �
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Prüfer Objects
We consider a class of Σ-pure-injective objects which generalises the notion of
a Prüfer module over a Dedekind domain.

Let 𝑘 be a commutative noetherian ring and A a 𝑘-linear locally finitely
presented category. An object 𝑋 ∈ A is called a Prüfer object if there is an
endomorphism 𝜙 : 𝑋 → 𝑋 such that for each 𝐶 ∈ fpA

(Pr1) each morphism 𝐶 → 𝑋 is annihilated by some power of 𝜙, and
(Pr2) the kernel of Hom(𝐶, 𝑋)

𝜙◦−
−−−−→ Hom(𝐶, 𝑋) is a finite length 𝑘-module.

Example 12.3.8. Let 𝐴 = 𝑘 be a Dedekind domain and 𝔭 a maximal ideal.
Then the Prüfer module

𝐴𝔭∞ =
⋃
𝑛≥0

𝐴/𝔭𝑛 = 𝐸 (𝐴/𝔭)

is a Prüfer object in Mod 𝐴, because the canonical morphism 𝐴/𝔭2 � 𝐴/𝔭
extends to an epimorphism 𝜙 : 𝐴𝔭∞ � 𝐴𝔭∞ with Ker 𝜙𝑛 = 𝐴/𝔭𝑛.

Proposition 12.3.9. A Prüfer object is Σ-pure-injective.

Proof Let 𝑋 be a Prüfer object with endomorphism 𝜙 : 𝑋 → 𝑋 . We show that
Hom(𝐶, 𝑋) is an artinian End(𝑋)-module for each 𝐶 ∈ fpA. Then the sub-
groups of finite definition of Hom(𝐶, 𝑋) satisfy the descending chain condition,
and therefore the assertion follows from Theorem 12.3.4.

Consider the polynomial ring 𝑘 [𝑡] in one variable and the homomorphism
𝑘 [𝑡] → End(𝑋) given by 𝑡 ↦→ 𝜙. Fix 𝐶 ∈ fpA and set 𝐶𝑛 = Ker Hom(𝐶, 𝜙𝑛)
for 𝑛 ≥ 0. An induction shows 𝐶𝑛 has finite length as a 𝑘-module, since it
fits into an exact sequence 0 → 𝐶𝑛−1 → 𝐶𝑛 → 𝐶1. Also, the socle of the
𝑘 [𝑡]-module Hom(𝐶, 𝑋) has finite length because it is annihilated by 𝑡 and
therefore contained in 𝐶1. It remains to apply the lemma below. �

Lemma 12.3.10. Let 𝐴 be a commutative noetherian ring. Then an 𝐴-module
𝑀 is artinian if and only if 𝑀 is a directed union of finite length submodules
and soc𝑀 has finite length.

Proof Suppose that 𝑀 is artinian. If 𝑀 =
⋃

𝑖 𝑀𝑖 is written as a directed union
of finitely generated submodules, then each 𝑀𝑖 has finite length. The module
soc𝑀 is semisimple and artinian, and therefore has finite length.

For the other implication consider an injective envelope soc𝑀 → 𝐸 (soc𝑀)
which extends to a morphism 𝛼 : 𝑀 → 𝐸 (soc𝑀). We claim that Ker𝛼 = 0.
Otherwise Ker𝛼 has a simple submodule, because it is a directed union of finite
length submodules. This is impossible, and therefore 𝛼 is a monomorphism.
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It remains to observe that 𝐸 (soc𝑀) is artinian, since it is a finite direct sum
of modules of the form 𝐸 (𝐴/𝔭) for some maximal ideal 𝔭 ∈ Spec 𝐴, cf.
Lemma 2.4.19. �

Suppose thatA is abelian. Then a Prüfer object with endomorphism 𝜙 : 𝑋 →
𝑋 is given by a sequence of extensions

0 𝑋1 𝑋𝑛 𝑋𝑛−1 0

0 𝑋1 𝑋𝑛+1 𝑋𝑛 0

𝜙𝑛

𝜙𝑛+1

where 𝑋𝑛 = Ker 𝜙𝑛 and the vertical morphisms are the inclusions. In particular,
𝑋 =

⋃
𝑛≥0 𝑋𝑛 and 𝜙 =

⋃
𝑛≥0 𝜙𝑛.

Compactness
Recall that a topological space 𝑇 is quasi-compact if for any family (𝑉𝑖)𝑖∈𝐼 of
closed subsets

⋂
𝑖∈𝐼 𝑉𝑖 = ∅ implies

⋂
𝑖∈𝐽 𝑉𝑖 = ∅ for some finite subset 𝐽 ⊆ 𝐼.

The correspondence in Theorem 12.2.2 provides an inclusion reversing iso-
morphism between the lattice of closed subsets of IndA and the lattice of Serre
subcategories of Ab(A). This yields a criterion for when the space IndA is
quasi-compact.

An abelian category C is finitely generated if there exists an object 𝑋 ∈ C

such that C equals the smallest Serre subcategory containing 𝑋 .

Proposition 12.3.11. Let A be a locally finitely presented category. The space
IndA is quasi-compact if and only if the abelian category Ab(A) is finitely
generated.

Proof Combine the correspondence in Theorem 12.2.2 with Lemma 12.1.16,
using the bijection IndA ∼−→ Sp P(A). �

Corollary 12.3.12. Suppose there exists an object 𝐺 ∈ fpA such that every
object in fpA is a quotient of 𝐺𝑛 for some integer 𝑛 ≥ 1. Then IndA is
quasi-compact.

Proof The abelian category Ab(A) is generated by HomA(𝐺,−), since each
object in Fp(fpA,Ab) is a quotient of some representable functor HomA(𝐶,−)

which embeds into HomA(𝐺
𝑛,−) when 𝐺𝑛 � 𝐶. �
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Left Almost Split Morphisms
A morphism 𝜙 : 𝑋 → 𝑌 is left almost split if it is not a split monomorphism,
and if every morphism 𝑋 → 𝑋 ′ which is not a split monomorphism factors
through 𝜙.

We fix a locally finitely presented abelian category A. In the following
we use freely the fact that the functor ev : A → P(A) identifies the pure-
injective objects in A with the injective objects in the purity category P(A);
see Lemma 12.1.8.

Theorem 12.3.13. For an indecomposable pure-injective object 𝑋 ∈ A the
following are equivalent.

(1) 𝑋 is the source of a left almost split morphism in A.
(2) �̄� is an injective envelope of a simple object in P(A).
(3) If 𝑋 is isomorphic to a direct summand of a product

∏
𝑖∈𝐼 𝑌𝑖 of indecom-

posable objects in A, then 𝑋 � 𝑌𝑖 for some 𝑖 ∈ 𝐼.

Proof (1) ⇒ (2): Let 𝜙 : 𝑋 → 𝑌 be left almost split. Choose a finitely gener-
ated subobject 0 ≠ 𝐶 ⊆ Ker 𝜙, a maximal subobject 𝑈 ⊆ 𝐶, and an injective
envelope 𝐶/𝑈 → �̄� ′. Then the induced morphism 𝐶 → �̄� ′ factors through
𝐶 ↩→ �̄� via a morphism 𝛼 : 𝑋 → 𝑋 ′. We claim that 𝛼 is a split monomorphism.
Otherwise it factors through 𝜙, which is impossible since 𝜙(𝐶) = 0. Thus 𝛼 is
an isomorphism, and �̄� is an injective envelope of a simple object in P(A).

(2) ⇒ (1): Let 𝑆 ↩→ �̄� be an injective envelope of a simple object 𝑆 in
P(A). We choose a left A-approximation �̄�/𝑆 → �̄� which yields a morphism
𝜙 : 𝑋 → 𝑌 . This is possible by Proposition 11.1.27, because we identify A with
the full subcategory of exact functors in P(A). We claim that 𝜙 is left almost
split. Clearly, 𝜙 is not a split monomorphism since 𝜙 is not a monomorphism.
Let 𝛼 : 𝑋 → 𝑋 ′ be a morphism which is not a split monomorphism. Thus
�̄� is not a monomorphism, and therefore �̄�(𝑆) = 0. Thus �̄� factors through
�̄� → �̄�/𝑆, and therefore through the approximation �̄�/𝑆 → �̄� via a morphism
𝛽 : 𝑌 → 𝑋 ′. Thus 𝛼 = 𝛽𝜙.

(2)⇒ (3): Let 𝑆 ↩→ �̄� be an injective envelope of a simple object 𝑆 in P(A).
If 𝑋 is isomorphic to a direct summand of a product

∏
𝑖∈𝐼 𝑌𝑖 of indecomposable

objects in A, then Hom(𝑆,𝑌𝑖) ≠ 0 for some 𝑖 ∈ 𝐼. This yields a monomorphism
𝑆 → �̄� →

∏
𝑖∈𝐼 𝑌𝑖 → 𝑌𝑖 , and therefore 𝑋 → 𝑌𝑖 is a pure monomorphism,

which splits since 𝑋 is pure-injective. Thus 𝑋 � 𝑌𝑖 since𝑌𝑖 is indecomposable.
(3) ⇒ (2): Let U = IndA \ {𝑋} and consider the canonical morphisms

𝜙 : 𝑋 −→
∏
𝑌 ∈U

𝑌Hom(𝑋,𝑌 ) .
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The condition (3) implies Ker 𝜙 ≠ 0. Choose a finitely generated non-zero
subobject 𝑈 ⊆ Ker 𝜙 and a maximal subobject 𝑉 ⊆ 𝑈 in P(A). Set 𝑆 = 𝑈/𝑉 .
The composite𝑈 � 𝑆� 𝐸 (𝑆) extends to a morphism �̄� → 𝐸 (𝑆) which does
not factor through 𝜙. Thus �̄� � 𝐸 (𝑆) by the construction of 𝜙. �

Corollary 12.3.14. The subset U ⊆ IndA of indecomposables which are the
source of a left almost split morphism is dense.

Proof Set𝑈 =
∏

𝑋∈U 𝑋 . This is an injective cogenerator of P(A) by the above
theorem, and therefore ⊥U = {0}. Thus U is dense by Theorem 12.2.2. �

Call a point 𝑋 ∈ IndA isolated if the set {𝑋} is open.

Corollary 12.3.15. If 𝑋 ∈ IndA is isolated, then 𝑋 is the source of a left
almost split morphism. The converse holds when 𝑋 is finitely presented.

Proof Set U = IndA \ {𝑋}. Then ⊥U ⊆ Ab(A) is a proper Serre subcat-
egory by Theorem 12.2.2 when 𝑋 is isolated. Choose 𝐶 ∈ Ab(A) \ ⊥U and
a maximal subobject 𝑈 ⊆ 𝐶. Then �̄� is an injective envelope of 𝐶/𝑈, since
HomP(A) (𝐶,𝑌 ) = 0 for all 𝑌 ∈ U.

Now suppose that 𝑆 ↩→ �̄� is an injective envelope of a simple object 𝑆 in
P(A). If 𝑋 is finitely presented, then 𝑆 is finitely presented in P(A). Thus
{𝑆}⊥ = U is closed. �

Fp-Injective Objects
Let A be a locally finitely presented abelian category and set C = fpA. An
object 𝑋 ∈ A satisfying Ext1

A
(−, 𝑋) |fpA = 0 is called fp-injective.

Lemma 12.3.16. An fp-injective object is injective if and only if it is pure-
injective.

Proof If 𝑋 is fp-injective then any exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 is
pure-exact. Thus 𝑋 is injective if and only if 𝑋 is pure-injective. �

Now suppose that C = fpA is an abelian category. We write Eff (C,Ab) for
the Serre subcategory of Fp(C,Ab) given by all functors 𝐹 with presentation

0 −→ HomC (𝐶,−) −→ HomC (𝐵,−) −→ HomC (𝐴,−) −→ 𝐹 −→ 0

coming from an exact sequence 0 → 𝐴→ 𝐵→ 𝐶 → 0 in C.

Proposition 12.3.17. We have

Eff (C,Ab)⊥ = {𝑋 ∈ A | 𝑋 is fp-injective}.
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Therefore the fp-injective objects form a definable subcategory and

Eff (C,Ab)⊥ ∩ IndA = InjA ∩ IndA.

Proof Identifying A = Lex(Cop,Ab), the first assertion follows as a refor-
mulation of Lemma 11.1.26. The subcategory Eff (C,Ab)⊥ is definable by
definition, and the last equality then follows from the fact that pure-injectivity
and injectivity coincide for fp-injective objects, by Lemma 12.3.16. �

Corollary 12.3.18. A locally finitely presented abelian category is locally
noetherian if and only if the injective objects form a definable subcategory.

Proof WhenA is locally noetherian then every fp-injective object is injective;
this follows from Baer’s criterion. Thus the injective objects form a definable
subcategory. Conversely, if the injectives form a definable subcategory, then
they are closed under coproducts and therefore A is locally noetherian, by
Theorem 11.2.12. �

12.4 Pure-Injective Modules

Let Λ be a ring. We consider the category of Λ-modules and set A = ModΛ.
Note that A is locally finitely presented with fpA = modΛ. In this section
we give an explicit description of the embedding A → P(A) into the purity
category, and we identify Ab(A) with the free abelian category over Λ. Also,
we consider the set of indecomposable pure-injectives IndΛ := Ind(ModΛ),
which is called the Ziegler spectrum of Λ.

The Free Abelian Category
The free abelian category over Λ is by definition

Ab(Λ) := Fp(modΛ,Ab)op =
(
mod

(
(modΛ)op) )op

.

We identify Λ with the representable functor HomΛ (Λ,−) in Ab(Λ). The
following universal property of Ab(Λ) justifies its name.

Proposition 12.4.1. For a ring Λ the category Ab(Λ) is abelian. Given an ob-
ject 𝑋 in an abelian category A and a ring homomorphism 𝜙 : Λ→ EndA(𝑋),
there exists a unique (up to isomorphism) exact functor Ab(Λ) → A sending
Λ to 𝑋 and inducing the homomorphism 𝜙.
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Proof The category Ab(Λ) is abelian by Lemma 2.1.6 since modΛ has co-
kernels. A homomorphism 𝜙 : Λ → EndA(𝑋) extends uniquely to an addi-
tive functor 𝜙0 : projΛ → A, and therefore uniquely to a right exact functor
𝜙1 : modΛ → A, by Lemma 2.1.7. Then 𝜙1 extends uniquely to a left exact
functor 𝜙2 : Ab(Λ) → A, again by Lemma 2.1.7. The functor 𝜙2 is exact by
Lemma 2.1.8. Clearly, 𝜙2 agrees on Λ with 𝜙 and is uniquely determined, up
to isomorphism. �

The universal property of Ab(Λ) yields an equivalence

Ab(Λ)op ∼−−→ Ab(Λop)

extending the identity Λop → Λop. We give an explicit description. To this end
define for 𝐹 ∈ Ab(Λop)

𝐹∨ : modΛ −→ Ab, 𝑋 ↦→ Hom(𝐹, 𝑋 ⊗Λ −).

Then we have for 𝑋 ∈ modΛ and 𝑌 ∈ mod(Λop)

(𝑋 ⊗Λ −)
∨ = HomΛ (𝑋,−) and (HomΛop (𝑌,−))∨ = − ⊗Λ 𝑌 .

Lemma 12.4.2. The assignment 𝐹 ↦→ 𝐹∨ yields mutually inverse equivalences
between Ab(Λ)op and Ab(Λop).

Proof Given 𝐹 ∈ Ab(Λ) and 𝐺 ∈ Ab(Λop), we have

Hom(𝐹, 𝐺∨) � Hom(𝐺, 𝐹∨).

This is clear for 𝐹 = HomΛ (𝑋,−) and follows for arbitrary 𝐹 by exactness,
since a presentation

HomΛ (𝑋1,−) −→ HomΛ (𝑋0,−) −→ 𝐹 −→ 0

yields an exact sequence

0 −→ 𝐹∨ −→ 𝑋0 ⊗Λ − −→ 𝑋1 ⊗Λ −

in Ab(Λop). Thus 𝐹∨∨ � 𝐹 since this holds for all representable functors. �

For A = ModΛ we have by definition Ab(A) = Ab(Λ). The following gives
an explicit description of the purity category P(A).

Proposition 12.4.3. The assignment 𝐹 ↦→ Hom((−)∨, 𝐹) induces an equiva-
lence

Add(mod(Λop),Ab) ∼−−→ Lex(Fp(modΛ,Ab),Ab) = P(A). (12.4.4)

https://doi.org/10.1017/9781108979108.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.020


402 Purity

Proof Both categories are locally finitely presented. We have

fp Add(mod(Λop),Ab) = Fp(mod(Λop),Ab) = Ab(Λop)op

and

fp P(A) = Fp(modΛ,Ab)op = Ab(Λ);

see Proposition 11.1.9 and Theorem 11.1.15. Thus the assertion follows from
the second part of Theorem 11.1.15 and the equivalence Ab(Λ)op ∼−→ Ab(Λop).

�

Corollary 12.4.5. The embedding ev: A→ P(A) identifies with the functor

A −→ Add(mod(Λop),Ab), 𝑋 ↦→ 𝑋 ⊗Λ −

via the equivalence (12.4.4). In particular, Λ-modules identify with exact func-
tors Ab(Λ)op → Ab, by sending a Λ-module 𝑋 to the functor

Ab(Λ) � 𝐹 ↦−→ Hom(𝐹∨, 𝑋 ⊗Λ −).

Proof We need to check that there is a natural isomorphism

ev(𝑋) = �̄� � Hom((−)∨, 𝑋 ⊗Λ −)

for every Λ-module 𝑋 . For 𝐹 = HomΛ (𝐶,−) we have

�̄� (𝐹) = HomΛ (𝐶, 𝑋) � Hom(𝐶 ⊗Λ −, 𝑋 ⊗Λ −) � Hom(𝐹∨, 𝑋 ⊗Λ −).

The functors �̄� and Hom((−)∨, 𝑋 ⊗Λ −) are both exact; so we have the isomor-
phism for all 𝐹 ∈ Ab(A).

The second assertion is an immediate consequence. �

Corollary 12.4.6. A sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 of Λ-modules is
pure-exact if and only if the induced sequence

0 −→ 𝑋 ⊗Λ 𝐶 −→ 𝑌 ⊗Λ 𝐶 −→ 𝑍 ⊗Λ 𝐶 −→ 0

is exact for every Λop-module 𝐶.

Proof Combine Lemma 12.1.6 and Corollary 12.4.5. �

A Criterion for Pure-Injectivity
Let 𝑘 be a commutative ring and Λ a 𝑘-algebra. We fix a minimal injective
cogenerator 𝐸 over 𝑘 and set 𝐷 (𝑋) := Hom𝑘 (𝑋, 𝐸) for every 𝑘-module 𝑋 .
This induces Matlis duality between right and left Λ-modules.

A Λ-module 𝑄 is pure-injective if 𝑄 is a pure-injective object in ModΛ, so
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every pure monomorphism 𝑋 → 𝑌 induces a surjective map HomΛ (𝑌,𝑄) →

HomΛ (𝑋,𝑄).

Proposition 12.4.7. For a Λ-module 𝑋 the following are equivalent.

(1) The module 𝑋 is pure-injective.
(2) The natural morphism 𝜙𝑋 : 𝑋 → 𝐷2 (𝑋) given by 𝜙𝑋 (𝑥) (𝛼) = 𝛼(𝑥) for

𝑥 ∈ 𝑋 and 𝛼 ∈ 𝐷 (𝑋) is a split monomorphism.
(3) There is a bimodule Λ𝑌Γ for some ring Γ and an injective Γ-module 𝐼 such

that 𝑋 is isomorphic to a direct summand of HomΓ (𝑌, 𝐼).

Proof (1) ⇒ (2): The composite 𝐷 (𝑋)
𝜙𝐷 (𝑋)
−−−−−→ 𝐷3 (𝑋)

𝐷 (𝜙𝑋)
−−−−−→ 𝐷 (𝑋) is the

identity. Thus 𝐷 (𝜙𝑋) is a split epimorphism, and therefore

𝐷 (𝜙𝑋 ⊗Λ 𝐶) � HomΛ (𝐶, 𝐷 (𝜙𝑋))

is an epimorphism for every left Λ-module 𝐶. It follows that 𝜙𝑋 ⊗Λ 𝐶 is a
monomorphism, and therefore 𝜙𝑋 is a pure monomorphism by Corollary 12.4.6.
We conclude that 𝜙𝑋 splits when 𝑋 is pure-injective.

(2) ⇒ (3): Take Λ𝑌Γ = Λ𝐷 (𝑋)𝑘 . Then 𝑋 is isomorphic to a direct summand
of Hom𝑘 (𝑌, 𝐸) = 𝐷2 (𝑋).

(3) ⇒ (1): The functor

HomΛ (−,HomΓ (𝑌, 𝐼)) � HomΓ (− ⊗Λ 𝑌, 𝐼)

sends pure-exact sequences to exact sequences, by the description of pure-exact
sequences in Corollary 12.4.6. Thus HomΓ (𝑌, 𝐼) is pure-injective. �

Corollary 12.4.8. Every Λ-module 𝑋 admits a pure monomorphism into a
pure-injective module of the form 𝑋 →

∏
𝑖∈𝐼 𝐷 (𝑌𝑖) that is given by a family of

finitely presented Λop-modules (𝑋𝑖)𝑖∈𝐼 .

Proof Choose an epimorphism
∐

𝑖∈𝐼 𝑌𝑖 → 𝐷 (𝑋) and take the composite
𝑋 → 𝐷2 (𝑋) →

∏
𝑖∈𝐼 𝐷 (𝑌𝑖). �

Example 12.4.9. Let Γ𝑋Λ be a bimodule and suppose that 𝑋 is artinian over Γ.
Then 𝑋 is aΣ-pure-injectiveΛ-module, because the descending chain condition
for subgroups of finite definition is satisfied; see Theorem 12.3.4.

Duality
There is no global duality between right and left Λ-modules, but there is a
bijective correspondence between specific classes of modules. This is based
on the equivalence Ab(Λ)op ∼−→ Ab(Λop) given by 𝐹 ↦→ 𝐹∨, which induces a
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bijection between Serre subcategories. Applying the bijective correspondence
between Serre subcategories of Ab(Λ) and definable subcategories of ModΛ
from Theorem 12.2.2, we obtain for definable subcategories a bijection

ModΛ ⊇ X ↦−→ ((⊥X)∨)⊥ ⊆ ModΛop.

For a Λ-module 𝑋 we consider the Serre subcategory
⊥𝑋 := {𝐹 ∈ Ab(Λ) | Hom(𝐹∨, 𝑋 ⊗Λ −) = 0}

and observe that (⊥𝑋)⊥ ⊆ ModΛ is the smallest definable subcategory con-
taining 𝑋 . We call a pair of Λ-modules (𝑋Λ, Λ𝑌 ) a dual pair if the following
equivalent conditions are satisfied:

(⊥𝑋)∨ = ⊥𝑌 ⇐⇒ ⊥𝑋 = (⊥𝑌 )∨.

Proposition 12.4.10. Let Γ𝑋Λ be a Γ-Λ-bimodule and fix an injective cogen-
erator 𝐼 ∈ Mod Γ. Then (𝑋,HomΓ (𝑋, 𝐼)) is a dual pair of Λ-modules.

Proof Choose 𝐹 ∈ Ab(Λ) with presentation

HomΛ (𝐶
′,−) −→ HomΛ (𝐶,−) −→ 𝐹 −→ 0

given by a morphism in 𝜙 : 𝐶 → 𝐶 ′ in modΛ. Then 𝐹∨ ∈ Ab(Λop) has the
presentation

0 −→ 𝐹∨ −→ 𝐶 ⊗Λ − −→ 𝐶 ′ ⊗Λ −

and we have

𝐹 ∈ ⊥𝑋 ⇐⇒ HomΛ (𝜙, 𝑋) is an epimorphism
⇐⇒ HomΓ (HomΛ (𝜙, 𝑋), 𝐼) is a monomorphism
⇐⇒ 𝜙 ⊗Λ HomΓ (𝑋, 𝐼) is a monomorphism
⇐⇒ 𝐹∨ ∈ ⊥ HomΓ (𝑋, 𝐼)

⇐⇒ 𝐹 ∈ (⊥ HomΓ (𝑋, 𝐼))
∨. �

Example 12.4.11. Let Λ be a 𝑘-algebra over a commutative ring 𝑘 . Then a
Λ-module 𝑋 together with its Matlis dual 𝐷 (𝑋) form a dual pair (𝑋, 𝐷 (𝑋)).

Pure-Semisimplicity
A ring Λ is called right pure-semisimple when every pure-exact sequence of
Λ-modules is split exact.

Proposition 12.4.12. For a ring Λ the following are equivalent.

(1) The ring Λ is right pure-semisimple.
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(2) Every Λ-module is pure-injective.
(3) Every Λ-module decomposes into a coproduct of indecomposable modules

with local endomorphism rings.
(4) Every object in Ab(Λ) is noetherian.

Proof Apply Theorem 12.3.3. �

Modules of Finite Projective Dimension
Let Λ be a ring. We consider for fixed 𝑛 ∈ N the full subcategory of Λ-modules
𝑋 such that the projective dimension proj.dim 𝑋 is bounded by 𝑛.

Proposition 12.4.13. Let Λ be a ring that is right perfect and left coherent.
Then for each 𝑛 ∈ N the Λ-modules of projective dimension at most 𝑛 form a
definable subcategory of ModΛ.

Recall that Λ is right perfect if every flat module is projective. The ring Λ
is right coherent if the category of finitely presented Λ-modules is abelian. For
example, every right artinian ring is right perfect and right coherent.

Proof Because Λ is right perfect, we have proj.dim 𝑋 ≤ 𝑛 if and only if
TorΛ𝑛+1 (𝑋,−) = 0. We can test the vanishing of TorΛ𝑛+1 (𝑋,−) on finitely pre-
sented left modules, since TorΛ𝑛+1 (𝑋,−) preserves filtered colimits and every
module is a filtered colimit of finitely presented modules. Because Λ is left
coherent, a finitely presented left Λ-module 𝑌 admits a projective resolution

· · · −→ 𝑃2 −→ 𝑃1 −→ 𝑃0 −→ 𝑌 −→ 0

such that each 𝑃𝑖 is finitely generated. It follows that TorΛ𝑛+1 (−, 𝑌 ) preserves
products, since each functor −⊗Λ 𝑃𝑖 preserves products and taking products of
abelian groups is exact. In particular⋂

𝑌 ∈mod(Λop)

Ker TorΛ𝑛+1 (−, 𝑌 )

is a definable subcategory of ModΛ, which equals the subcategory of modules
of projective dimension at most 𝑛. �

A consequence of Theorem 12.2.2 is then the fact that we may test on IndΛ
the finitistic dimension of Λ, that is, the supremum of all finite projective
dimensions proj.dim 𝑋 .
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The Ziegler Spectrum of an Artin Algebra
Let Λ be an Artin algebra over a commutative artinian ring 𝑘 . We write
𝐷 = Hom𝑘 (−, 𝐸) for the Matlis duality over 𝑘 given by a minimal injective
cogenerator 𝐸 .

We consider A = ModΛ and identify P(A) = Add(mod(Λop),Ab). Finitely
presented and finite length modules over Λ coincide because Λ is artinian. We
find some further finiteness conditions that are equivalent.

Proposition 12.4.14. The assignment 𝑋 ↦→ soc(𝑋 ⊗Λ −) induces a bijection
between

– the isomorphism classes of indecomposable finite length Λ-modules, and
– the isomorphism classes of simple objects in Add(mod(Λop),Ab).

Proof Write (modΛ,mod 𝑘) for the category of 𝑘-linear functors modΛ →

mod 𝑘 and observe that 𝐹 ↦→ 𝐷 (𝐹) := 𝐷 ◦ 𝐹 induces an equivalence

(modΛ,mod 𝑘)op ∼−−→ ((modΛ)op,mod 𝑘).

Next observe that every simple functor in ((modΛ)op,mod 𝑘) is of the form

𝑆𝑌 = HomΛ (−, 𝑌 )/RadΛ (−, 𝑌 )

for some indecomposable finitely presentedΛ-module𝑌 since EndΛ (𝑌 ) is local.
Let 𝑋 ∈ modΛ be indecomposable. The functor

𝐷 (𝑋 ⊗Λ −) � HomΛop (−, 𝐷 (𝑋))

has a unique simple quotient 𝑆𝐷 (𝑋) . Thus 𝑋 ⊗Λ − has 𝐷 (𝑆𝐷 (𝑋) ) as a unique
simple subobject in P(A), and this implies

soc(𝑋 ⊗Λ −) � 𝐷 (𝑆𝐷 (𝑋) ).

Let 𝑆 ∈ P(A) be simple. Then 𝑆 = 𝐷 (𝑆𝑌 ) for some indecomposable 𝑌 ∈

modΛop. We have 𝐷 HomΛop (−, 𝑌 ) � 𝐷 (𝑌 ) ⊗Λ −, and this implies

soc(𝐷 (𝑌 ) ⊗Λ −) � 𝑆. �

Theorem 12.4.15. For an indecomposable pure-injective Λ-module 𝑋 the
following are equivalent.

(1) 𝑋 is finitely presented.
(2) 𝑋 is the source of a left almost split morphism.
(3) 𝑋 is isolated.
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Proof We use the embedding A → P(A) which sends 𝑌 to �̄� = 𝑌 ⊗Λ −; see
Corollary 12.4.5.

(1)⇔ (2): The module 𝑋 is finitely presented if and only if �̄� is the injective
envelope of a simple object in P(A), by Proposition 12.4.14, and this happens if
and only if 𝑋 is the source of a left almost split morphism, by Theorem 12.3.13.

(2)⇔ (3): Apply Corollary 12.3.15, using also the first part of the proof. �

Corollary 12.4.16. An Artin algebra of infinite representation type has an
indecomposable pure-injective module of infinite length.

Proof The space IndΛ is quasi-compact by Corollary 12.3.12; so it cannot
consist of infinitely many isolated points. �

The Zariski Spectrum
Let Λ be a commutative noetherian ring. We consider the Zariski spectrum
SpecΛ consisting of all prime ideals, where a subset is Zariski closed if it is of
the form

V(𝔞) = {𝔭 ∈ SpecΛ | 𝔞 ⊆ 𝔭}

for some ideal 𝔞 ofΛ. Recall that the assignment𝔭 ↦→ 𝐸 (Λ/𝔭) yields a bijection

Φ : SpecΛ ∼−−→ Sp(ModΛ)

onto the spectrum consisting of a representative set of the isomorphism classes
of indecomposable injective Λ-modules (Corollary 2.4.15).

Let us compare via Φ the Zariski topology on SpecΛ with the topology on
Sp(ModΛ) which is defined in Lemma 12.1.12.

Proposition 12.4.17. For a subset V ⊆ SpecΛ the following conditions are
equivalent.

(1) Φ(V) is closed.
(2) Φ(V) is closed under products. If 𝑋 ⊆

∏
𝑖∈𝐼 𝑌𝑖 for some indecomposable

injective module 𝑋 and a family of modules 𝑌𝑖 ∈ Φ(V), then 𝑋 ∈ Φ(V).
(3) (SpecΛ) \ V is specialisation closed.
(4) V =

⋂
𝑖∈𝐼 U𝑖 for a family of Zariski open subsets U𝑖 ⊆ SpecΛ.

Proof (1) ⇔ (2): This follows from Lemma 12.1.14.
(1) ⇔ (3): By definition, Φ(V) is closed if it is of the form C⊥ for some

Serre subcategory C ⊆ modΛ. Such a Serre subcategory corresponds to a
specialisation closed subset of SpecΛ via C ↦→ SuppC; see Proposition 2.4.8.
Using the theory of associated primes, the mapΦ identifies (SpecΛ) \ (SuppC)
with C⊥ by Corollary 2.4.16.
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(3) ⇔ (4): A subset of SpecΛ is specialisation closed if and only if it is the
union of Zariski closed subsets. �

Corollary 12.4.18. The assignment 𝔭 ↦→ 𝐸 (Λ/𝔭) gives a map Φ : SpecΛ →

IndΛ that identifies SpecΛ with a Ziegler closed subset of IndΛ. For a subset
V ⊆ SpecΛ the following conditions are equivalent.

(1) Φ(V) is Ziegler closed.
(2) Φ(V) is closed under products. If 𝑋 ⊆

∏
𝑖∈𝐼 𝑌𝑖 for some indecomposable

injective module 𝑋 and a family of modules 𝑌𝑖 ∈ Φ(V), then 𝑋 ∈ Φ(V).
(3) (SpecΛ) \ V is specialisation closed.
(4) V =

⋂
𝑖∈𝐼 U𝑖 for a family of Zariski open subsets U𝑖 ⊆ SpecΛ.

Proof The injective Λ-modules form a definable subcategory of ModΛ since
Λ is noetherian, by Corollary 12.3.18. Clearly, every injective module is pure-
injective, and it follows that Φ identifies SpecΛ with a Ziegler closed subset of
IndΛ.

The second part of the assertion follows from Proposition 12.4.17 since the
topology on Sp(ModΛ) is the restriction of the Ziegler topology on IndΛ. �

Remark 12.4.19. For a commutative noetherian ring Λ, Zariski and Ziegler
topology on SpecΛ are related via Hochster duality as follows. The prime
ideal spectrum of any commutative ring with its Zariski topology is a spectral
space. For a spectral space there is a dual topology with closed subsets of the
form

⋂
𝑖∈𝐼 U𝑖 for any family of quasi-compact and open subsets U𝑖 (the Ziegler

closed subsets). The dual space is again spectral, and its Hochster dual topology
coincides with the original Zariski topology of SpecΛ.

Injective Cohomology Representations
Let 𝐺 be a finite group and 𝑘 a field. We consider modules over the group
algebra 𝑘𝐺 and note that 𝑘𝐺 is a self-injective algebra. The group cohomology

𝑅 := 𝐻∗(𝐺, 𝑘) := Ext∗𝑘𝐺 (𝑘, 𝑘)

is by definition the Ext-algebra of the trivial representation 𝑘; it is a graded
commutative and noetherian 𝑘-algebra by a theorem of Golod, Venkov and
Evens [29, Corollary 3.10.2]. We consider only graded modules over 𝑅. Let 𝑅+
denote the unique maximal ideal consisting of positive degree elements and call
an 𝑅-module torsion if each element is annihilated by some power of 𝑅+. The
torsion modules form a localising subcategory which is denoted by Mod0 𝑅.
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We extend the functor 𝐻∗(𝐺,−) = Ext∗𝑘𝐺 (𝑘,−) from 𝑘𝐺-modules to the
category K(Inj 𝑘𝐺) of complexes of injective 𝑘𝐺-modules. Set

Hom∗
K(𝑘𝐺) (𝑋,𝑌 ) =

⊕
𝑛∈Z

HomK(𝑘𝐺) (𝑋,Σ
𝑛𝑌 )

for each pair of complexes 𝑋,𝑌 and

𝐻∗(𝐺, 𝑋) = Hom∗
K(𝑘𝐺) (𝑖𝑘, 𝑋)

where 𝑖𝑘 denotes an injective resolution of the trival representation. Note that
End∗K(𝑘𝐺) (𝑖𝑘) � 𝑅. The functor 𝐻∗(𝐺,−) is cohomological and preserves
coproducts; it induces the following commutative diagram.

Loc(𝑘𝐺) K(Inj 𝑘𝐺) Kac (Inj 𝑘𝐺)

Mod0 𝑅 Mod 𝑅 Mod 𝑅/Mod0 𝑅

𝐻∗ (𝐺,−)

The upper row of the diagram is taken from Proposition 9.1.10, where Loc(𝑘𝐺)
denotes the localising subcategory generated by 𝑘𝐺, viewed as a complex
concentrated in degree zero, and keeping in mind that 𝑘𝐺 is self-injective.
Note that 𝐻∗(𝐺, 𝑋) is torsion for each 𝑋 ∈ Loc(𝑘𝐺), since 𝐻∗(𝐺, 𝑘𝐺) is
torsion (in fact just 𝑘 in degree zero). Thus the diagram does commute.

We wish to explain that the functor 𝐻∗(𝐺,−) admits a partial adjoint when
we restrict to injective 𝑅-modules.

Given a pair of 𝑅-modules 𝑀, 𝑁 we write

Hom∗
𝑅 (𝑀, 𝑁) =

⊕
𝑛∈Z

Hom𝑛
𝑅 (𝑀, 𝑁)

for the graded abelian group of 𝑅-linear morphisms 𝜙 : 𝑀 → 𝑁 satisfying
𝜙(𝑀 𝑖) ⊆ 𝑀 𝑖+𝑛 for 𝜙 ∈ Hom𝑛

𝑅 (𝑀, 𝑁) and 𝑖, 𝑛 ∈ Z. The module 𝑀 is called
torsion free if Hom∗

𝑅 (−, 𝑀) vanishes on Mod0 𝑅. Recall that the category of
injective 𝑅-modules is closed under coproducts since 𝑅 is noetherian.

Also, we use the triangle equivalence 𝑍0 : Kac (Inj 𝑘𝐺) ∼−→ StMod 𝑘𝐺 and
view it as an identification (Proposition 4.4.18). A quasi-inverse maps a 𝑘𝐺-
module 𝑋 to a complete resolution 𝑡𝑋 .

Proposition 12.4.20. There is a fully faithful functor 𝑇 : Inj 𝑅 → K(Inj 𝑘𝐺)
with a natural isomorphism

Hom∗
𝑅 (𝐻

∗(𝐺,−), 𝐼) � Hom∗
K(𝑘𝐺) (−, 𝑇 (𝐼))

for each 𝐼 ∈ Inj 𝑅. The functor preserves products and coproducts. Moreover,
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𝑇 restricts to a fully faithful functor

{𝐼 ∈ Inj 𝑅 | 𝐼 torsion free} −→ Kac (Inj 𝑘𝐺) ∼−−→ StMod 𝑘𝐺

and 𝑇 (𝐼) is a Σ-pure-injective 𝑘𝐺-module for each torsion free 𝐼 ∈ Inj 𝑅.

Proof The triangulated category K(Inj 𝑘𝐺) is compactly generated (Propo-
sition 9.3.12) and therefore every cohomological functor K(Inj 𝑘𝐺)op → Ab
that preserves coproducts is representable, by Brown’s representability theorem
(Theorem 3.4.16). This yields for each 𝐼 ∈ Inj 𝑅 an object 𝑇 (𝐼) that represents
Hom∗

𝑅 (𝐻
∗(𝐺,−), 𝐼). Given 𝐽 ∈ Inj 𝑅 we compute

Hom∗
K(𝑘𝐺) (𝑇 (𝐼), 𝑇 (𝐽)) � Hom∗

𝑅 (𝐻
∗(𝐺,𝑇 (𝐼)), 𝐽)

� Hom∗
𝑅 (Hom∗

K(𝑘𝐺) (𝑖𝑘, 𝑇 (𝐼)), 𝐽)

� Hom∗
𝑅 (Hom∗

𝑅 (𝐻
∗(𝐺, 𝑖𝑘), 𝐼), 𝐽)

� Hom∗
𝑅 (Hom∗

𝑅 (𝑅, 𝐼), 𝐽)

� Hom∗
𝑅 (𝐼, 𝐽).

Thus 𝑇 is fully faithful. Clearly, 𝑇 preserves products. To show that it preserves
coproducts consider for any family (𝐼𝛼) of injective 𝑅-modules the canon-
ical morphism 𝜙 :

∐
𝑇 (𝐼𝛼) → 𝑇 (

∐
𝐼𝛼). Apply Hom∗

K(𝑘𝐺) (𝑖𝑋,−) where
𝑖𝑋 is the injective resolution of a finitely generated 𝑘𝐺-module 𝑋 . Then
Hom∗

K(𝑘𝐺) (𝑖𝑋, 𝜙) is an isomorphism since 𝑖𝑋 is compact, and it follows that
𝜙 is an isomorphism since the objects of the form 𝑖𝑋 generate K(Inj 𝑘𝐺)
(Proposition 9.3.12). If 𝐼 ∈ Inj 𝑅 is torsion free, then

𝐻∗𝑇 (𝐼) � Hom∗
K(𝑘𝐺) (𝑘𝐺,𝑇 (𝐼)) � Hom∗

𝑅 (𝐻
∗(𝐺, 𝑘𝐺), 𝐼) = 0,

and therefore 𝑇 (𝐼) is acyclic.
Next we use the identification Kac (Inj 𝑘𝐺) ∼−→ StMod 𝑘𝐺 and show that

𝑇 (𝐼) is a Σ-pure-injective 𝑘𝐺-module for each torsion free 𝐼 ∈ Inj 𝑅. We apply
the criterion of Theorem 12.3.4 and show that the canonical monomorphism
𝑇 (𝐼) (N) → 𝑇 (𝐼)N splits in Mod 𝑘𝐺. Clearly, the canonical monomorphism
𝐼 (N) → 𝐼N splits since 𝑅 is noetherian. The functor 𝑇 preserves products and
coproducts. Thus 𝑇 (𝐼) (N) → 𝑇 (𝐼)N splits in Kac (Inj 𝑘𝐺) and therefore also in
StMod 𝑘𝐺. It remains to apply the lemma below. �

Lemma 12.4.21. Let A be a Frobenius category. Then a monomorphism in A

splits if and only if it splits in StA. �

Let 𝔭 be a non-maximal prime ideal in 𝑅 and 𝑛 ∈ Z. Then 𝐼𝔭 = 𝐸 (𝑅/𝔭)
and its twist 𝐼𝔭 (𝑛) are indecomposable injective 𝑅-modules. We may assume
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that the corresponding 𝑘𝐺-module 𝑇 (𝐼𝔭 (𝑛)) is indecomposable, by removing
all non-zero injective summands.

For a 𝑘𝐺-module 𝑋 one defines its Tate cohomology

�̂�𝑛 (𝐺, 𝑋) := Êxt𝑛𝑘𝐺 (𝑘, 𝑋) := 𝐻𝑛 Hom𝑘𝐺 (𝑘, 𝑡𝑋) (𝑛 ∈ Z)

and more generally

Êxt𝑛𝑘𝐺 (−, 𝑋) := 𝐻𝑛 Hom𝑘𝐺 (−, 𝑡𝑋) (𝑛 ∈ Z)

where 𝑡𝑋 denotes a complete resolution of 𝑋 (cf. Lemma 4.4.19). Note that
�̂�∗(𝐺, 𝑋) is naturally an 𝑅-module via restriction along

Ext∗𝑘𝐺 (𝑘, 𝑘) −→ Êxt∗𝑘𝐺 (𝑘, 𝑘).

Corollary 12.4.22. Let 𝐼 ∈ Inj 𝑅 be torsion free. The 𝑘𝐺-module 𝑇 (𝐼) satisfies
�̂�∗(𝐺,𝑇 (𝐼)) � 𝐼 and is uniquely determined (up to isomorphism in StMod 𝑘𝐺)
by the isomorphism

Hom∗
𝑅 (�̂�

∗(𝐺,−), 𝐼) � Êxt∗𝑘𝐺 (−, 𝑇 (𝐼)).

Moreover, after removing all non-zero injective summands, 𝑇 (𝐼) admits a
unique decomposition into indecomposable modules of the form 𝑇 (𝐼𝔭 (𝑛)), with
𝔭 a prime ideal in 𝑅 and 𝑛 ∈ Z.

Proof The first part follows from the defining isomorphism for 𝑇 (𝐼). More
precisely, taking a complete resolution 𝑡𝑘 of 𝑘 we have

𝐼 � Hom∗
𝑅 (𝐻

∗(𝐺, 𝑡𝑘), 𝐼) � Hom∗
K(𝑘𝐺) (𝑡𝑘, 𝑇 (𝐼)) � �̂�

∗(𝐺,𝑇 (𝐼)),

where the first isomorphism is induced by 𝑅 = 𝐻∗(𝐺, 𝑖𝑘) → 𝐻∗(𝐺, 𝑡𝑘) since
𝐻∗(𝐺, 𝑝𝑘) is torsion, the second isomorphism defines 𝑇 (𝐼), and the third
isomorphism is from Lemma 4.4.19. Similarly, we have for 𝑋 ∈ StMod 𝑘𝐺

Hom∗
𝑅 (�̂�

∗(𝐺, 𝑋), 𝐼) � Hom∗
𝑅 (𝐻

∗(𝐺, 𝑡𝑋), 𝐼)

� Hom∗
K(𝑘𝐺) (𝑡𝑋, 𝑇 (𝐼))

� Êxt∗𝑘𝐺 (𝑋,𝑇 (𝐼)),

and the uniqueness of 𝑇 (𝐼) then follows from Yoneda’s lemma.
The module 𝑇 (𝐼) is Σ-pure-injective and therefore decomposes uniquely

into indecomposables, by Theorem 12.3.4. Then one uses the description of
the indecomposable injective 𝑅-modules via Spec 𝑅 (Corollary 2.4.15). �

Let us denote by Proj 𝑅 the set of all homogeneous prime ideals of 𝑅 except
the maximal ideal consisting of positive degree elements.
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Corollary 12.4.23. Taking a prime ideal 𝔭 to 𝑇 (𝐼𝔭) yields an injective map

Proj𝐻∗(𝐺, 𝑘) −→ Ind 𝑘𝐺. �

Corollary 12.4.24. The modules of the form 𝑇 (𝐼) (𝐼 ∈ Inj𝐻∗(𝐺, 𝑘) torsion
free) form a definable subcategory of Mod 𝑘𝐺.

Proof The torsion free injective 𝐻∗(𝐺, 𝑘)-modules form a definable subcat-
egory, because they are closed under products, coproducts, and direct sum-
mands, keeping in mind that 𝐻∗(𝐺, 𝑘) is noetherian (Corollary 12.3.18). Then
this category equals Add 𝐼0 = Prod 𝐼0 for some product-complete module 𝐼0.
It follows that 𝑇 (𝐼0) is a product-complete 𝑘𝐺-module, since 𝑇 preserves
products and coproducts. Thus the image of the functor 𝑇 is definable, by
Proposition 12.3.7. �

Notes

The notion of a pure subgroup (Servanzuntergruppe) of an abelian group was
introduced by Prüfer [163]. For modules over arbitrary rings the concept of
purity is due to Cohn [53]. Pure-injective modules are also known as alge-
braically compact modules [119, 200]. It was shown by Kiełpiński [124] and
independently by Stenström [196] that every module admits a pure-injective
envelope. For the characterisation of Σ-pure-injective modules, see Gruson and
Jensen [99], Zimmermann [204], and Zimmermann-Huisgen [205], building
on work of Chase [49, 50], but also Garavaglia [86] in a model theoretic setting.
The space of indecomposable pure-injective modules is known as the Ziegler
spectrum because it was introduced by Ziegler in his work on the model theory
of modules [203]. For an Artin algebra of infinite representation type the ex-
istence of a large indecomposable module was established by Auslander [10].
Product-complete modules were introduced in joint work with Saorín [134].

The study of pure-exactness via the embedding of a module category into
a bigger Grothendieck category (the purity category) goes back to work of
Gruson and Jensen [100]; see also Simson [192]. The systematic treatment
of purity for locally finitely presented categories is due to Crawley-Boevey
[58]. Definable subcategories were introduced by Crawley-Boevey [59] for
module categories, and more generally for locally finitely presented categories
in [126]. The related notion of an elementary subcategory and its connection
with Ziegler closed subsets appear already in [203]. For the correspondence
between definable subcategories and Ziegler closed subsets, see Herzog [111]
and [125].
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The free abelian category on a category was introduced by Freyd [75]. The
characterisation of pure-injective modules via duality is taken from Auslander’s
work [11], where it arises from the description of morphisms determined by
objects. Almost split morphisms were introduced by Auslander and Reiten
[15]; for the connection with simple functors, see [11]. The characterisation
of indecomposable pure-injectives which are the source of a left almost split
morphism combines results from [10] and [57].

Any ring of finite representation type is known to be right and left pure-
semisimple, by a result of Ringel and Tachikawa [175]. In fact, pure-semisimple
rings were introduced by Simson, and no ring is known which is right pure-
semisimple but not of finite representation type [191, 193].

For commutative rings the connection between the Zariski spectrum and the
Ziegler spectrum was clarified by Prest [160] in terms of Hochster’s duality for
spectral spaces [113].

The construction of pure-injective modules for group algebras via group
cohomology is taken from work with Benson [32]. For example these modules
play a role in the study of local duality for representations of finite groups, and
more generally of finite group schemes [31].

For more material and further references about infinite length modules and
purity, see [133, 162].
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