
2

Background on C∞-schemes

One can think of C∞-rings as a specific type of commutative R-algebra, where
there are not only the addition and multiplication operations, but operations
corresponding to every smooth function Rn → R. Alternatively, C∞-rings
can also be considered as certain product-preserving functors, and we will
introduce both definitions in this chapter.
C∞-rings, along with a spectrum functor, form the building blocks of C∞-

schemes. As in ordinary Algebraic Geometry, the image of a C∞-ring under
the spectrum functor gives an affine C∞-scheme. However, while there will
be many similarities to ordinary Algebraic Geometry, C∞-algebraic geometry
has several differences that may challenge the reader’s intuition. These include
the following.

• C∞-rings are non-noetherian, so finitely presented C∞-rings are not neces-
sarily finitely generated.

• The spectrum functor uses maximal ideals with residue field R, not prime
ideals. This makes affine C∞-schemes Hausdorff and regular.

• Affine C∞-schemes are very general, enough so that all manifolds can be
represented as affine C∞-schemes, and study can be restricted to affine C∞-
schemes in many cases. However, manifolds with corners will not always be
affine C∞-schemes with corners in Chapter 5.

• C∞-rings are not in 1-1 correspondence with affine C∞-schemes, and the
spectrum functor is neither full nor faithful. However, the full subcategory of
complete C∞-rings is in 1-1 correspondence with affine C∞-schemes, and
the spectrum functor is full and faithful on this subcategory.

Our motivating example throughout this chapter will be a manifold X . We
will see that its set of smooth functions C∞(X) is a complete C∞-ring, and
applying the spectrum functor returns the affine C∞-scheme with underlying
topological space X along with its sheaf of smooth functions. Transverse fibre
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2.1 Introduction to category theory 17

products of manifolds map to fibre products of (affine) C∞-schemes. Unlike
the category of manifolds, all fibre products of (affine) C∞-schemes exist,
which is one of the motivating reasons for considering this category.

Our main reference for this chapter is the second author [49, §2–§4]. See
also [42], Dubuc [23], Moerdijk and Reyes [75], and Kock [52].

2.1 Introduction to category theory

We begin with some well-known definitions from category theory. All the ma-
terial of this section can be found in MacLane [64].

2.1.1 Categories and functors

Definition 2.1 A category C consists of a proper class of objects Obj(C),
and for all X,Y ∈ Obj(C) a set Hom(X,Y ) of morphisms f from X to
Y , written f : X → Y , and for all X,Y, Z ∈ Obj(C) a composition map
◦ : Hom(X,Y )×Hom(Y, Z) → Hom(X,Z), written (f, g) �→ g◦f . Compo-
sition must be associative, that is, if f : W → X , g : X → Y and h : Y → Z

are morphisms in C then (h ◦ g) ◦ f = h ◦ (g ◦ f). For each X ∈ Obj(C) there
must exist an identity morphism idX : X → X such that f◦idX = f = idY ◦f
for all f : X → Y in C. A morphism f : X → Y is an isomorphism if there
exists f−1 : Y → X with f−1 ◦ f = idX and f ◦ f−1 = idY .

If C is a category, the opposite category Cop is C with the directions of
all morphisms reversed. That is, we define Obj(Cop) = Obj(C), and for all
X,Y, Z ∈ Obj(C) we define HomCop(X,Y ) = HomC(Y,X), and for f :

X → Y , g : Y → Z in C we define f ◦Cop g = g ◦C f , and idCop X = idC X .
We call D a subcategory of C if Obj(D) ⊆ Obj(C), and HomD(X,Y ) ⊆

HomC(X,Y ) for all X,Y ∈ Obj(D), and compositions and identities in D
agree with those in C. We call D a full subcategory if also HomD(X,Y ) =

HomC(X,Y ) for all X,Y in D.

Definition 2.2 Let C,D be categories. A (covariant) functor F : C → D
gives for all objects X in C an object F (X) in D, and for all morphisms
f : X → Y in C a morphismF (f) : F (X) → F (Y ) inD, such thatF (g◦f) =
F (g) ◦ F (f) for all f : X → Y , g : Y → Z in C, and F (idX) = idF (X) for
all X ∈ Obj(C). A contravariant functor F : C → D is a covariant functor
F : Cop → D.

Functors compose in the obvious way. Each category C has an obvious
identity functor idC : C → C with idC(X) = X and idC(f) = f for all
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18 Background on C∞-schemes

X, f . A functor F : C → D is called full if the maps HomC(X,Y ) →
HomD(F (X), F (Y )), f �→ F (f) are surjective for all X,Y ∈ Obj(C), and
faithful if the maps HomC(X,Y ) → HomD(F (X), F (Y )) are injective for
all X,Y ∈ Obj(C).

A functor F : C → D is called essentially surjective if for every object
Y ∈ D there exists X ∈ C such that Y ∼= F (X) in D.

Let C,D be categories and F,G : C → D be functors. A natural transfor-
mation η : F ⇒ G gives, for all objects X in C, a morphism η(X) : F (X) →
G(X) such that if f : X → Y is a morphism in C then η(Y ) ◦ F (f) =

G(f) ◦ η(X) as a morphism F (X) → G(Y ) in D. We call η a natural isomor-
phism if η(X) is an isomorphism for all X ∈ Obj(C).

An equivalence between categories C,D is a functor F : C → D such that
there exists a functor G : D → C and natural isomorphisms η : G ◦ F ⇒ idC
and ζ : F ◦G ⇒ idD. That is, F is invertible up to natural isomorphism. Then
we call C,D equivalent categories. A functor F : C → D is an equivalence if
and only if it is full, faithful, and essentially surjective.

It is a fundamental principle of category theory that equivalent categories
C,D should be thought of as being ‘the same’, and naturally isomorphic func-
tors F,G : C → D should be thought of as being ‘the same’. Note that equiva-
lence of categories C,D is much weaker than strict isomorphism: isomorphism
classes of objects in C are naturally in bijection with isomorphism classes of
objects in D, but there is no relation between the sizes of the isomorphism
classes, so that C could have many more objects than D, for instance.

2.1.2 Limits, colimits and fibre products in categories

We shall be interested in various kinds of limits and colimits in our categories of
spaces. These are objects in the category with a universal property with respect
to some class of diagrams.

Definition 2.3 Let C be a category. A diagram Δ in C is a class of objects Si

in C for i ∈ I , and a class of morphisms ρj : Sb(j) → Se(j) in C for j ∈ J ,
where b, e : J → I . The diagram is called small if I, J are sets (rather than
something too large to be a set), and finite if I, J are finite sets.

A limit of the diagram Δ is an object L in C and morphisms πi : L → Si

for i ∈ I such that ρj ◦ πb(j) = πe(j) for all j ∈ J , with the universal property
that given L′ ∈ C and π′

i : L
′ → Si for i ∈ I with ρj ◦ π′

b(j) = π′
e(j) for all

j ∈ J , there is a unique morphism λ : L′ → L with π′
i = πi ◦ λ for all i ∈ I .

The limit is called small, or finite, if Δ is small, or finite.
Here are some important kinds of limit.
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2.1 Introduction to category theory 19

(i) A terminal object is a limit of the empty diagram.
(ii) Let X,Y be objects in C. A product X × Y is a limit of the diagram with

two objects X,Y and no morphisms.
(iii) Let g : X → Z, h : Y → Z be morphisms in C. A fibre product is a

limit of a diagram X
g−→Z

h←−Y . The limit object W is often written
X ×g,Z,h Y or X ×Z Y . Explicitly, a fibre product is an object W and
morphisms e : W → X and f : W → Y in C, such that g ◦ e = h ◦ f ,
with the universal property that if e′ : W ′ → X and f ′ : W ′ → Y are
morphisms in C with g ◦ e′ = h ◦ f ′ then there is a unique morphism
b : W ′ → W with e′ = e ◦ b and f ′ = f ◦ b. The commutative diagram

W
f

��

e��

Y

h ��
X

g �� Z

(2.1)

is called a Cartesian square.
If Z is a terminal object then X ×Z Y is a product X × Y .

A colimit of the diagram Δ is an object L in C and morphisms λi : Si → L

for i ∈ I such that λb(j) = λe(j) ◦ ρj for all j ∈ J , which has the universal
property that given L′ ∈ C and λ′

i : Si → L′ for i ∈ I with λ′
b(j) = λ′

e(j) ◦ ρj
for all j ∈ J , there is a unique morphism π : L → L′ with λ′

i = π ◦ λi for
all i ∈ I .

Here are some important kinds of colimit.

(iv) An initial object is a colimit of the empty diagram.
(v) Let X,Y be objects in C. A coproduct X 	 Y is a colimit of the diagram

with two objects X,Y and no morphisms.
(vi) Let e : W → X , f : W → Y be morphisms in C. A pushout is a colimit of

a diagramX
e←−W

f−→Y . The colimit objectZ is often writtenX	e,W,f

Y or X 	W Y . Explicitly, a pushout is an object Z and morphisms g :

X → Z and h : Y → Z in C, such that g ◦ e = h ◦ f , with the universal
property that if g′ : X → Z ′ and h′ : Y → Z ′ are morphisms in C with
g′ ◦e = h′ ◦f then there is a unique morphism b : Z → Z ′ with g′ = b◦g
and h′ = b ◦ h. The diagram (2.1) is then called a co-Cartesian square.

If W is an initial object then X 	W Y is a coproduct X 	 Y .

Limits and colimits may not may not exist. If a limit or colimit exists, it is
unique up to canonical isomorphism in C. We say that all limits, or all small
limits, or all finite limits exist in C, if limits exist for all diagrams, or all small
diagrams, or all finite diagrams respectively; and similarly for colimits.
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20 Background on C∞-schemes

A category C is called complete if all small limits exist in C, and cocomplete
if all small colimits exist in C.

Limits in C are equivalent to colimits (of the opposite diagram) in the oppo-
site category Cop. So, for example, fibre products in C are pushouts in Cop.

A directed colimit is a colimit for which the diagramΔ is an upward-directed
set, that is, Δ is a preorder (a category in which there is at most one morphism
Si → Sj between any two objects) in which every finite subset has an upper
bound. Confusingly, directed colimits are also called inductive limits or di-
rect limits, although they are actually colimits. So we can say that all directed
colimits exist in C.

The dual concept, called codirected limit, will not be used in this book.

By category theory general nonsense, one can prove the following.

Proposition 2.4 Suppose a category C has a terminal object, and all fibre
products exist in C. Then all finite limits exist in C.

Example 2.5 Let C be a category of spaces, for instance, topological spaces
Top, manifolds Man, schemes Sch, or C∞-schemes C∞Sch in §2.5. Then
we have the following.

(i) The terminal object is the point ∗, and exists for all sensible C.
(ii) Products X × Y are the usual products of manifolds, topological spaces,

. . . .
(iii) Fibre products may or may not exist, depending on C. All fibre products

W = X ×g,Z,h Y exist in Top, with W =
{
(x, y) ∈ X × Y : g(x) =

h(y)
}

, with the subspace topology as a subset of X×Y . All fibre products
also exist in Sch,C∞Sch. Fibre products X ×g,Z,h Y exist in Man if
g, h are transverse, but not in general.

(iv) The initial object is the empty set ∅, and exists for all sensible C.
(v) Coproducts X 	 Y are disjoint unions of the spaces X,Y . In Man this

exists if dimX = dimY .
(vi) General pushouts in categories such as Man,Sch,C∞Sch, . . . tend not

to exist, and have not been a focus of research.

Many important constructions in categories of spaces can be expressed as
finite limits. For example, the intersection X ∩ Y of submanifolds X,Y ⊂ Z

is a fibre product X ×Z Y . By Proposition 2.4, the existence of finite limits
reduces to that of fibre products. So in our study of C∞-schemes with corners,
we will be particularly interested in existence and properties of fibre products.

Example 2.6 Let C be a category of (generalized) commutative algebras
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over a field K, for example, commutative C-algebras AlgC, or C∞-rings
C∞Rings in §2.2 with K = R. Then we have the following.

(i) The terminal object is the zero algebra 0.
(ii) Products B × C are direct sums B ⊕ C.

(iii) For morphisms β : B → D, γ : C → D, the fibre product B ×β,D,γ C is
the subalgebra

{
(b, c) ∈ B ⊕ C : β(b) = γ(c)

}
in B ⊕ C.

(iv) The initial object is the field K.
(v) Coproducts B 	 C are (possibly completed) tensor products B ⊗K C.

(vi) For morphisms α : A → B, β : A → C, a pushout is a (possibly
completed) tensor product B ⊗α,A,β C.

2.1.3 Adjoint functors

Definition 2.7 Let C,D be categories. An adjunction (F,G, ϕ) between C
and D consists of functors F : C → D and G : D → C and bijections

ϕ(X,Y ) : HomD(F (X), Y )
∼=−→ HomC(X,G(Y ))

for all objects X ∈ C and Y ∈ D, which are natural in X,Y , that is, if
f : X1 → X2 and g : Y1 → Y2 are morphisms in C,D then the following
commutes:

HomD(F (X2), Y1) g◦−
��

ϕ(X2,Y1)��

HomD(F (X2), Y2)−◦F (f)
�� HomD(F (X1), Y2)

ϕ(X1,Y2) ��
HomC(X2, G(Y1))

−◦f �� HomC(X1, G(Y1))
G(g)◦− �� HomC(X1, G(Y2)).

Adjunctions are often written like this:

C
F �� D.
G

��

Then we say that F is left adjoint to G, and G is right adjoint to F . We say
that F : C → D has a right adjoint if it can be completed to an adjunction
(F,G, ϕ). We say that G : D → C has a left adjoint if it can be completed to
an adjunction (F,G, ϕ).

Suppose C is a category, and D ⊂ C is a full subcategory of C. We say that D
is a reflective subcategory of C if the inclusion inc : D ↪→ C has a left adjoint.
This left adjoint R : C → D is called a reflection functor.

Dually, if C ⊂ D is a full subcategory, we say C is a coreflective subcategory
of D if the inclusion inc : C ↪→ D has a right adjoint. This right adjoint
C : D → C is called a coreflection functor.
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Here are some properties of adjoint functors.

Theorem 2.8 (a) In Definition 2.7 there are natural transformations η :

IdC ⇒ G ◦ F , called the unit of the adjunction, and ε : F ◦ G ⇒ IdD,
called the counit of the adjunction, such that for X ∈ C and Y ∈ D we have

η(X) = ϕ(X,F (X))(idF (X)) : X −→ G(F (X)),

ε(Y ) = ϕ(G(Y ), Y )−1(idG(Y )) : F (G(Y )) −→ Y.

(b) F ,G are both equivalences of categories if and only if F ,G are both full
and faithful, if and only if η,ε are both natural isomorphisms.

(c) If F : C → D has a right adjoint, then the right adjoint G : D → C is
determined up to natural isomorphism by F .

(d) If G : D → C has a left adjoint, then the left adjoint F : C → D is
determined up to natural isomorphism by G.

(e) If F : C → D has a right adjoint then it preserves colimits, that is, F maps
a colimit in C to the corresponding colimit in D (which is guaranteed to exist
in D, if the initial colimit exists in C).

(f) If G : D → C has a left adjoint then it preserves limits, that is, G maps a
limit in D to the corresponding limit in C (which is guaranteed to exist in C, if
the initial limit exists in D).

(g) Let D ⊂ C be a reflective subcategory, with reflection functor R : C → D.
Suppose some class of colimits (e.g. all small colimits, or all pushouts) exists
in C. Then the same class of colimits exists in D. We can obtain the colimit of
a diagram in D by taking the colimit in C and then applying R.

(h) Let C ⊂ D be a coreflective subcategory, with coreflection functor C :

D → C. Suppose some class of limits (e.g. all small limits, or all fibre products)
exists in D. Then the same class of limits exists in C. We can obtain the limit of
a diagram in C by taking the limit in D and then applying C.

Remark 2.9 We will use adjoint functors in two main ways below. Firstly, by
Theorem 2.8(e)–(h), we can use them to prove results on existence of (co)limits.
The second is more philosophical, and we illustrate it by two examples.

(a) In §2.5 we define an adjunction

LC∞RS
Γ �� C∞Rings

Spec
��

between the categories C∞Rings of C∞-rings and LC∞RS of locally
C∞-ringed spaces. Here the definition of the global sections functor Γ is
simple and obvious, but that of the spectrum functor Spec is complicated
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2.2 C∞-rings 23

and apparently arbitrary. However, Theorem 2.8(c) implies that Spec is
determined up to natural isomorphism by Γ and the adjoint property. This
justifies the definition of Spec, showing it could not have been otherwise.

(b) In §6.2 we define an adjunction

C∞Schc
in

inc �� C∞Schc.
C

��

Here C∞Schc is the category of C∞-schemes with corners, C∞Schc
in

is the non-full category with only interior morphisms, with inclusion inc :

C∞Schc
in ↪→ C∞Schc, and C : C∞Schc → C∞Schc

in is the ‘corner
functor’, which encodes the notions of boundary ∂X and k-cornersCk(X)

of a (firm) C∞-scheme with corners X in a functorial way.
Again, the definition of inc is simple and obvious, and that of C is com-

plicated and contrived. But the adjoint property shows that C is determined
up to natural isomorphism by inc, and so justifies the definition.

2.2 C∞-rings

Here are two equivalent definitions of C∞-ring. The first definition describes
C∞-rings as functors while the second definition describes C∞-rings as sets
in the style of classical algebra.

Definition 2.10 Write Man for the category of manifolds, and Euc for the
full subcategory of Man with objects the Euclidean spaces Rn. That is, the
objects of Euc are Rn for n = 0, 1, 2, . . ., and the morphisms in Euc are
smooth maps f : Rm → Rn. Write Sets for the category of sets. In both
Euc and Sets we have notions of (finite) products of objects (that is, Rm+n =

Rm × Rn, and products S × T of sets S, T ), and products of morphisms.
Define a categorical C∞-ring to be a product-preserving functor F : Euc

→ Sets. Here F should also preserve the empty product, that is, it maps R0

in Euc to the terminal object in Sets, the point ∗. If F,G : Euc → Sets

are categorical C∞-rings, a morphism η : F → G is a natural transformation
η : F ⇒ G. We write CC∞Rings for the category of categorical C∞-rings.

Categorical C∞-rings are an example of an Algebraic Theory in the sense of
Adámek, Rosický, and Vitale [1], and many of the basic categorical properties
of C∞-rings follow from this.

Definition 2.11 A C∞-ring is a set C together with operations

Φf : Cn =
�n copies �

C × · · · × C −→ C
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for all n � 0 and smooth maps f : Rn → R, where by convention when n = 0

we define C0 to be the single point {∅}. These operations must satisfy the
following relations: suppose m,n � 0, and fi : R

n → R for i = 1, . . . ,m and
g : Rm → R are smooth functions. Define a smooth function h : Rn → R by

h(x1, . . . , xn) = g
(
f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)

)
,

for all (x1, . . . , xn) ∈ Rn. Then for all (c1, . . . , cn) ∈ Cn we have

Φh(c1, . . . , cn) = Φg

(
Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)

)
.

We also require that for all 1 � j � n, defining πj : Rn → R by πj :

(x1, . . . , xn) �→ xj , we have Φπj
(c1, . . . , cn) = cj for all (c1, . . . , cn) ∈ Cn.

Usually we refer to C as the C∞-ring, leaving the C∞-operations Φf implicit.
A morphism of C∞-rings

(
C, (Φf )f :Rn→R C∞

)
,
(
D, (Ψf )f :Rn→R C∞

)
is a

map φ : C → D such that Ψf

(
φ(c1), . . . , φ(cn)

)
= φ ◦ Φf (c1, . . . , cn) for all

smooth f : Rn → R and c1, . . . , cn ∈ C. We will write C∞Rings for the
category of C∞-rings.

Each C∞-ring has an underlying commutative R-algebra structure. The ad-
dition map f : R2 → R, f : (x, y) �→ x+ y gives addition ‘+’ on C as an R-
algebra by c+ d = Φf (c, d) for c, d ∈ C. The multiplication map g : R2 → R,
g : (x, y) �→ xy gives multiplication ‘ · ’ on C by c · d = Φg(c, d). For each
λ ∈ R write λ′ : R → R, λ′ : x �→ λx, and then scalar multiplication is
λc = Φλ′(c). Let 0′, 1′ : R0 → R map ∗ to 0, 1. Then 0 = Φ0′ and 1 = Φ1′

are the zero element and identity element for C. The projection and compo-
sition relations show this gives C the structure of a commutative R-algebra.
However, an R-algebra allows only for operations corresponding to polyno-
mials, whereas a C∞-ring allows for operations corresponding to all smooth
functions and so has a richer structure.

Proposition 2.12 There is an equivalence C∞Rings ∼= CC∞Rings. This
identifies C in C∞Rings with F : Euc → Sets in CC∞Rings such that
F
(
Rn
)
= Cn for n � 0, and for smooth f : Rn → R then F (f) is identified

with Φf .

Proving Proposition 2.12 is straightforward and relies on F being product-
preserving. We leave it as an exercise to guide the reader’s intuition.

The following example motivates these definitions.

Example 2.13 (a) Let X be a manifold. Define a functor FX : Euc → Sets

by FX(Rn) = HomMan(X,Rn), and FX(g) = g◦ : HomMan(X,Rm) →
HomMan(X,Rn) for each morphism g : Rm → Rn in Euc. Then FX is a
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categorical C∞-ring. If f : X → Y is a smooth map of manifolds, define a nat-
ural transformation Ff : FY ⇒ FX by Ff (R

n) = ◦f : HomMan(Y,R
n) →

HomMan(X,Rn). Then Ff is a morphism in CC∞Rings. Define a functor
FCC∞Rings
Man : Man → CC∞Ringsop to map X �→ FX and f �→ Ff .

(b) Let X be a manifold. Write C∞(X) for the set of smooth functions c :

X → R. For non-negative integers n and smooth f : Rn → R, define C∞-
operations Φf : C∞(X)n → C∞(X) by composition(

Φf (c1, . . . , cn)
)
(x) = f

(
c1(x), . . . , cn(x)

)
, (2.2)

for all c1, . . . , cn ∈ C∞(X) and x ∈ X . The composition and projection
relations follow directly from the definition of Φf , so that C∞(X) forms a
C∞-ring. If we consider the R-algebra structure of C∞(X) as a C∞-ring, this
is the canonical R-algebra structure on C∞(X). If f : X → Y is a smooth
map of manifolds, then f∗ : C∞(Y ) → C∞(X) mapping c �→ c ◦ f is a
morphism of C∞-rings.

Define FC∞Rings
Man : Man → C∞Ringsop to map X �→ C∞(X) and f �→

f∗. Moerdijk and Reyes [75, Th. I.2.8] show thatFC∞Rings
Man is full and faithful,

and takes transverse fibre products in Man to fibre products in C∞Ringsop.
This fact is non-trivial, as it relies on knowing that all manifolds X can be
embedded as a closed subspace ofRn for some large n, thatC∞(X) is a finitely
generated C∞-ring (as defined later in Proposition 2.17), and that manifolds
admit partitions of unity that behave well with respect to smooth maps.

There are many more C∞-rings than those that come from manifolds. For
example, if X is a smooth manifold of positive dimension, then the set Ck(X)

of k-differentiable maps f : X → R is a C∞-ring with operations Φf defined
as in (2.2), and each of these C∞-rings is different for all k = 0, 1, . . . .

Example 2.14 Consider X = ∗ the point, so dimX = 0, then C∞(∗) =

R and Example 2.13 shows the C∞-operations Φf : Rn → R given by
Φf (x1, . . . , xn) = f(x1, . . . , xn) make R into a C∞-ring. It is the initial
object in C∞Rings, and the simplest non-zero example of a C∞-ring. The
zero C∞-ring is the set {0}, where all C∞-operations Φf : {0} → {0} send
0 �→ 0, and this is the final object in C∞Rings.

Definition 2.15 An ideal I in C is an ideal in C when C is considered as
a commutative R-algebra. We do not require it to be closed under all C∞-
operations, as this would force I = C.

We can make the R-algebra quotient C/I into a C∞-ring using Hadamard’s
Lemma. That is, if f : Rn → R is smooth, define ΦI

f : (C/I)n → C/I by(
ΦI

f (c1 + I, . . . , cn + I)
)
(x) = Φf

(
c1(x), . . . , cn(x)

)
+ I.
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Then Hadamard’s Lemma says for any smooth function f : Rn → R, there
exists gi : R2n → R for i = 1, . . . , n, such that

f(x1, . . . , xn)− f(y1, . . . , yn) =

n∑
i=1

(xi − yi)gi(x1, . . . , xn, y1, . . . , yn).

If d1, . . . , dn are alternative choices for c1, . . . , cn, then ci − di ∈ I for each
i = 1, . . . , n and

Φf (c1, . . . , cn)− Φf (d1, . . . , dn) =

n∑
i=1

(ci − di)Φf (c1, . . . , cn, d1, . . . , dn)

lies in I , so ΦI
f is independent of the choice of representatives c1, . . . , cn in C

and is well defined.

The next definition and proposition come from Adámek et al. [1, Rem. 11.21,
Props. 11.26, 11.28, 11.30 and Cor. 11.33].

Definition 2.16 If A is a set then by [1, Rem. 11.21] we can define the free
C∞-ring FA generated by A. We may think of FA as C∞(RA), where RA ={
(xa)a∈A : xa ∈ R

}
. Explicitly, we define FA to be the set of maps c : RA →

R which depend smoothly on only finitely many variables xa, and operations
Φf are defined as in (2.2). Regarding xa : RA → R as functions for a ∈ A, we
have xa ∈ FA, and we call xa the generators of FA.

Then FA has the universal property that if C is any C∞-ring then a choice
of map α : A → C uniquely determines a morphism φ : FA → C with
φ(xa) = α(a) for a ∈ A. When A = {1, . . . , n} we have FA ∼= C∞(Rn), as
in [52, Prop. III.5.1].

Proposition 2.17 (a) Every object C in C∞Rings admits a surjective mor-
phism φ : FA → C from some free C∞-ring FA. We call C finitely generated
if this holds with A finite. The kernel of φ, ker(φ), is an ideal in FA and the
quotient FA/ ker(φ) is isomorphic to C.

(b) Every object C in C∞Rings fits into a coequalizer diagram

FB
α ��

β

�� FA φ �� C, (2.3)

that is, C is the colimit of FB ⇒ FA in C∞Rings, where φ is automatically
surjective. We call C finitely presented if this holds with A,B finite.

Actually as any relation f = g in C is equivalent to the relation f − g = 0,
we can simplify (2.3) by taking β to map xb �→ 0 for all b ∈ B. This means that
finitely presented is equivalent to requiring ker(φ) from Proposition 2.17(a) to
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be finitely generated as an ideal. But the analogue of this for C∞-rings with
corners in §4.5 will not hold. In addition, C∞(Rn) is not noetherian, so ideals
in a finitely generated C∞-ring may not be finitely generated. This implies
that finitely presented C∞-rings are a proper subcategory of finitely generated
C∞-rings, in contrast to ordinary Algebraic Geometry, where they are equal.

We now study limits and colimits in C∞Rings. For the pushout of mor-
phisms φ : C → D, ψ : C → E in C∞Rings, we write D 	φ,C,ψ E or
D 	C E. In the special case C =R the coproduct D 	R E will be written as
D ⊗∞ E. Recall that the coproduct of R-algebras A,B is the tensor product
A⊗B; however, D⊗∞E is usually different from their tensor product D⊗E,
as discussed for C∞(Rn) and C∞(Rm) above. For example, for m,n > 0,
then C∞(Rm) ⊗∞ C∞(Rn) ∼= C∞(Rm+n) as in [75, p. 22], which contains
C∞(Rm) ⊗ C∞(Rn) but is larger than this, as it includes elements such as
exp(fg) for f ∈ C∞(Rm) and g ∈ C∞(Rn).

By Moerdijk and Reyes [75, pp. 21–22] and Adámek et al. [1, Props. 1.21,
2.5 and Th. 4.5] we have the following.

Proposition 2.18 The category C∞Rings of C∞-rings has all small limits
and all small colimits. The forgetful functor Π : C∞Rings → Sets pre-
serves limits and directed colimits, and can be used to compute such (co)limits
pointwise; however, it does not preserve general colimits such as pushouts.

The proof of Proposition 2.18 is straightforward, firstly by proving that the
small limits and directed colimits in the category of sets inherit their universal
properties and a C∞-ring structure. Proving separately that coproducts exist
follows from the universal property and considering simple cases. This includes
that for m,n > 0 then the coproduct of C∞(Rn) and C∞(Rm) is C∞(Rn+m),
and that for ideals I, J we have the coproduct
(
C∞(Rn)/I

)
⊗∞

(
C∞(Rm)/J

) ∼= (C∞(Rn)⊗∞ C∞(Rm)
)
/(I, J).

A similar result holds for all finitely generated C∞-rings. The proof then uses
that any C∞-ring is a directed colimit of finitely generated C∞-rings to deduce
the result.

We will need local C∞-rings and localizations of C∞-rings to define local
C∞-ringed spaces and C∞-schemes in §2.5.

Definition 2.19 Recall that a local R-algebra is an R-algebra R with a unique
maximal ideal m. The residue field of R is the field (isomorphic to) R/m. A
C∞-ring C is called local if, regarded as an R-algebra, C is a local R-algebra
with residue field R. The quotient morphism gives a (necessarily unique) mor-
phism of C∞-rings π : C → R with the property that c ∈ C is invertible if
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and only if π(c) = 0. Equivalently, if such a morphism π : C → R exists
with this property, then C is local with maximal ideal mC

∼= Kerπ. Write
C∞Ringslo ⊂ C∞Rings for the full subcategory of local C∞-rings.

Usually morphisms of local rings are required to send maximal ideals into
maximal ideals. However, if φ : C → D is any morphism of local C∞-rings,
we see that φ−1(mD) = mC as the residue fields in both cases are R, so there
is no difference between local morphisms and morphisms for C∞-rings.

Remark 2.20 We use the term ‘local C∞-ring’ following Dubuc [23, Def. 4]
and the second author [42]. They are known by different names in other ref-
erences, such as Archimedean local C∞-rings in [73, §3], C∞-local rings in
Dubuc [23, Def. 2.13], and pointed local C∞-rings in [75, §I.3]. Moerdijk and
Reyes [73, 74, 75] use ‘local C∞-ring’ to mean a C∞-ring which is a local
R-algebra, and require no restriction on its residue field.

The next proposition may be found in Moerdijk and Reyes [75, §I.3] and
Dubuc [23, Prop. 5].

Proposition 2.21 All finite colimits exist in C∞Ringslo, and agree with the
corresponding colimits in C∞Rings.

In [25], the first author shows how to extend this theorem to small colimits,
and how small limits also exist in C∞Ringslo but usually do not agree with
small limits in C∞Rings. A key fact used in the proof is the existence of
bump functions for Rn.

Localizations of C∞-rings were studied in [22, 23, 49, 73, 74, 75].

Definition 2.22 A localization C(s−1 : s ∈ S) = D of a C∞-ring C at a
subset S ⊂ C is a C∞-ring D and a morphism π : C → D such that π(s) is
invertible in D (as an R-algebra) for all s ∈ S, which has the universal property
that for any morphism of C∞-rings φ : C → E such that φ(s) is invertible in
E for all s ∈ S, there is a unique morphism ψ : D → E with φ = ψ ◦ π. We
call π : C → D the localization morphism for D.

By adding an extra generator s−1 and extra relation s · s−1 − 1 = 0 for
each s ∈ S to C, it can be shown that localizations C(s−1 : s ∈ S) always
exist and are unique up to unique isomorphism. When S = {c} then C(c−1) ∼=
(C ⊗∞ C∞(R))/I , where I is the ideal generated by ι1(c) · ι2(x) − 1, and x

is the generator of C∞(R), and ι1, ι2 are the coproduct morphisms ι1 : C →
C ⊗∞ C∞(R) and ι2 : C∞(R) → C ⊗∞ C∞(R).

An example of this is that if f ∈ C∞(Rn) is a smooth function, and U =

f−1(R\{0}) ⊆ Rn, then using partitions of unity one can show thatC∞(U) ∼=
C∞(Rn)(f−1), as in [75, Prop. I.1.6].
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Definition 2.23 A C∞-ring morphism x : C → R, where R is regarded as a
C∞-ring as in Example 2.14, is called an R-point. Note that a map x : C → R

is a morphism of C∞-rings whenever it is a morphism of the underlying R-
algebras, as in [75, Prop. I.3.6]. We define Cx as the localization Cx = C(s−1 :

s ∈ C, x(s) = 0), and denote the projection morphism by πx : C → Cx.
Importantly, [74, Lem. 1.1] shows Cx is a local C∞-ring.

We will use R-points x : C → R to define our spectrum functor in §2.5. We
can describe Cx explicitly as in [49, Prop. 2.14].

Proposition 2.24 Let x : C → R be an R-point of a C∞-ring C, and consider
the projection morphism πx : C → Cx. Then Cx

∼= C/Kerπx. This kernel is
Kerπx = I , where

I=
{
c∈C : there exists d∈C with x(d) =0 in R and c · d=0 in C

}
. (2.4)

While this localization morphism πx : C → Cx is surjective, general local-
izations of C∞-rings need not have surjective localization morphisms. Here is
an important example of localization of C∞-rings.

Example 2.25 Let C∞
p (Rn) be the set of germs of smooth functions c :

Rn → R at p ∈ Rn for n � 0 and p ∈ Rn. We give C∞
p (Rn) a C∞-ring

structure by using (2.2) on germs of functions. There are several equivalent
definitions.

(i) C∞
p (Rn) is the set of ∼-equivalence classes [U, c] of pairs (U, c), where

p ∈ U ⊆ Rn is open and c : U → R is smooth, and (U, c) ∼ (U ′, c′) if
there exists open p ∈ U ′′ ⊆ U ∩ U ′ with c|U ′′ = c′|U ′′ .

(ii) C∞
p (Rn) ∼= C∞(Rn)/Ip, where Ip ⊂ C∞(Rn) is the ideal of functions

vanishing near p.
(iii) C∞

p (Rn) ∼= C∞(Rn)(f−1 : f ∈ C∞(Rn), f(p) = 0).

Then C∞
p (Rn) is local, with maximal ideal mp =

{
[U, c]∈C∞

p (Rn) : c(x)=

0
}

.

Finally, we prove some facts about exponentials and logs in (local) C∞-
rings. These will be used in defining C∞-rings with corners.

Proposition 2.26 (a) Let C be a C∞-ring. Then the C∞-operation Φexp :

C → C induced by exp : R → R is injective.

(b) Let C be a local C∞-ring, with morphism π : C → R. If a ∈ C with
π(a) > 0 then there exists b ∈ C with Φexp(b) = a. This b is unique by (a).
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Proof For (a), let a ∈ C with b = Φexp(a) ∈ C. Then Φexp(−a) is the inverse
b−1 of b. The map t �→ exp(t) − exp(−t) is a diffeomorphism R → R. Let
e : R → R be its inverse. Define smooth f : R2 → R by f(x, y) = e(x− y).
Then f(exp t, exp(−t)) = t. Hence in the C∞-ring C we have

Φf (b, b
−1) = Φf (Φexp(a),Φexp ◦−(a)) = Φf◦(exp,exp ◦−)(a) = Φid(a) = a.

But b determines b−1 uniquely, so Φf (b, b
−1) = a implies that b = Φexp(a)

determines a uniquely, and Φexp : C → C is injective.
For (b), choose smooth g, h : R → R with g(x) = log x for x � 1

2π(a) > 0,
h(π(a)) > 0, and h(x) = 0 for x � 1

2π(a). Set b = Φg(a) and c = Φh(a).
Then

c · (Φexp(b)− a) = Φh(a) · (Φexp ◦g(a)− a) = Φh(x)·(exp ◦g(x)−x)(a) = 0,

since h(x) · (x− exp ◦g(x)) = 0. Also π(c) = h(π(a)) > 0, so c is invertible.
Thus Φexp(b) = a.

2.3 Modules and cotangent modules of C∞-rings

We discuss modules and cotangent modules for C∞-rings, following [49, §5].

Definition 2.27 A module M over a C∞-ring C is a module over C as a
commutativeR-algebra, and morphisms of C-modules are the usual morphisms
of R-algebra modules. Denote μM : C×M → M the multiplication map, and
write μM (c,m) = c · m for c ∈ C and m ∈ M . The category C-mod of
C-modules is an abelian category.

If a C-module M fits into an exact sequence C ⊗ Rn → M → 0 in C-mod
then it is finitely generated; if it further fits into an exact sequence C ⊗ Rm →
C ⊗ Rn → M → 0 it is finitely presented. This second condition is not
automatic from the first as C∞-rings are generally not noetherian.

For a morphism φ : C → D of C∞-rings and M in C-mod we have
φ∗(M) = M ⊗C D in D-mod, giving a functor φ∗ : C-mod → D-mod. For
N in D-mod there is a C-module φ∗(N) = N with C-action μφ∗(N)(c, n) =

μN (φ(c), n). This gives a functor φ∗ : D-mod → C-mod.

Example 2.28 Let Γ∞(E) be the collection of smooth sections e of a vector
bundleE → X of a manifold X , so Γ∞(E) is a vector space and a module over
C∞(X). If λ : E → F is a morphism of vector bundles over X , then there is a
morphism of C∞(X)-modules λ∗ : Γ∞(E) → Γ∞(F ), where λ∗ : e �→ λ◦e.

For each smooth map of manifolds f : X → Y there is a morphism of
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C∞-rings f∗ : C∞(Y ) → C∞(X). Each vector bundle E → Y gives a
vector bundle f∗(E) → X . Using (f∗)∗ : C∞(Y )-mod→ C∞(X)-mod from
Definition 2.27, then (f∗)∗

(
Γ∞(E)

)
= Γ∞(E)⊗C∞(Y )C

∞(X) is isomorphic
to Γ∞(f∗(E)

)
in C∞(X)-mod.

The definition of C-module used only the commutative R-algebra structure
of C; however, the cotangent module ΩC of C uses the full C∞-ring structure,
making it smaller in some sense than the corresponding classical Algebraic
Geometry version of Kähler differentials from [36, II 8].

Definition 2.29 Take a C∞-ring C and M ∈ C-mod, then a C∞-derivation
is a map d : C → M that satisfies the following: for any smooth f : Rn → R

and elements c1, . . . , cn ∈ C, then

dΦf (c1, . . . , cn)−
n∑

i=1

Φ ∂f
∂xi

(c1, . . . , cn) · dci = 0. (2.5)

This implies that d is R-linear and is a derivation of C as a commutative R-
algebra, that is, d(c1c2) = c1 · dc2 + c2 · dc1 for all c1, c2 ∈ C.

The pair (M, d) is called a cotangent module for C if it is universal in the
sense that for any M ′ ∈ C-mod with C∞-derivation d′ : C → M ′, there
exists a unique morphism of C-modules λ : M → M ′ with d′ = λ ◦ d. Then
a cotangent module is unique up to unique isomorphism. We can explicitly
construct a cotangent module for C by considering the free C-module over the
symbols dc for all c ∈ C, and quotienting by all relations (2.5) for smooth
f : Rn → R and elements c1, . . . , cn ∈ C. We call this construction ‘the’
cotangent module of C, and write it as dC : C → ΩC .

If we have a morphism of C∞-rings C → D then ΩD = φ∗(ΩD) can be
considered as a C-module withC∞-derivation dD◦φ : C → ΩD. The universal
property of ΩC gives a unique morphism Ωφ : ΩC → ΩD of C-modules
such that dD ◦ φ = Ωφ ◦ dC . From this we have a morphism of D-modules
(Ωφ)∗ : ΩC ⊗C D → ΩD. If we have two morphisms of C∞-rings φ : C → D,
ψ : D → E then uniqueness implies that Ωψ◦φ = Ωψ ◦ Ωφ : ΩC → ΩE.

Here is our motivating example.

Example 2.30 As in Example 2.28, if X is a manifold, its cotangent bundle
T ∗X is a vector bundle over X , and its global sections Γ∞(T ∗X) form a
C∞(X)-module, with C∞-derivation d : C∞(X) → Γ∞(T ∗X), d : c �→ dc

the usual exterior derivative, and equation (2.5) following from the chain rule.
One can show that (Γ∞(T ∗X), d) has the universal property in Definition

2.29, and so forms a cotangent module for C∞(X). This is stated in [49,
Ex. 5.4], and proved in greater generality in Theorem 7.7(a) below.
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If we have a smooth map of manifolds f : X → Y , then f∗(T ∗Y ),

T ∗X are vector bundles over X , and the derivative df : f∗(T ∗Y ) → T ∗X
is a vector bundle morphism. This induces a morphism of C∞(X)-modules
(df)∗ : Γ∞(f∗(T ∗Y )) → Γ∞(T ∗X), which is identified with (Ωf∗)∗ from
Definition 2.29 using that Γ∞(f∗(T ∗Y )) ∼= Γ∞(T ∗Y )⊗C∞(Y ) C

∞(X).

This example shows that Definition 2.29 abstracts the notion of sections of
a cotangent bundle of a manifold to a concept that is well defined for any C∞-
ring. Here are further helpful examples that we later generalize for C∞-rings
with corners.

Example 2.31 (a) Let A be a set and FA the free C∞-ring from Definition
2.16, with generators xa ∈ FA for a ∈ A. Then there is a natural isomorphism

ΩFA
∼=
〈
dxa : a ∈ A

〉
R
⊗R FA.

(b) Suppose C is defined by a coequalizer diagram (2.3) in C∞Rings. Then
writing (xa)a∈A, (x̃b)b∈B for the generators of FA,FB , we have an exact se-
quence

〈
dx̃b : b ∈ B

〉
R
⊗R C

γ ��
〈
dxa : a ∈ A

〉
R
⊗R C

δ �� ΩC
�� 0

in C-mod, where if α, β in (2.3) map α : x̃b �→ fb
(
(xa)a∈A

)
, β : x̃b �→

gb
(
(xa)a∈A

)
, for fb, gb depending only on finitely many xa, then γ, δ are

given by

γ(dx̃b)=
∑
a∈A

φ
( ∂fb
∂xa

(
(xa)a∈A

)
− ∂gb
∂xa

(
(xa)a∈A

))
dxa, δ(dxa)=dC◦φ(xa).

Hence as in [49, Prop. 5.6], ifC is finitely generated (or finitely presented) in the
sense of Proposition 2.17, then ΩC is finitely generated (or finitely presented).

Cotangent modules behave well under localization, as in the following prop-
osition from [49, Prop. 5.7]. This proposition is used to prove the theorem that
follows it, and we use it to generalize these results to C∞-rings with corners.

Proposition 2.32 Let C be a C∞-ring, S ⊆ C, and let D = C(s−1 : s ∈ S)

be the localization of C at S with projection π : C → D, as in Definition 2.22.
Then (Ωπ)∗ : ΩC ⊗C D → ΩD is an isomorphism of D-modules.

Finally, here is [49, Th. 5.8] which shows how pushouts of C∞-rings give
exact sequences of cotangent modules.
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Theorem 2.33 Suppose we are given a pushout diagram of C∞-rings:

C
β

��

α
��

E

δ ��
D

γ �� F,

so that F = D	C E. Then the following sequence of F-modules is exact:

ΩC ⊗C,γ◦α F
(Ωα)∗⊕−(Ωβ)∗��

ΩD ⊗D,γ F
⊕ ΩE ⊗E,δ F

(Ωγ)∗⊕(Ωδ)∗ �� ΩF
�� 0. (2.6)

Here (Ωα)∗ : ΩC ⊗C,γ◦α F → ΩD ⊗D,γ F is induced by Ωα : ΩC → ΩD, and
so on. Note the sign of −(Ωβ)∗ in (2.6).

2.4 Sheaves

In this section we explain presheaves and sheaves with values in a (nice) cate-
gory A, following Godement [33] and MacLane and Moerdijk [65]. Through-
out we suppose A is complete, that is, all small limits exist in A, and co-
complete, that is, all small colimits exist in A. The categories of sets, abelian
groups, rings, C∞-rings, monoids, etc., all satisfy this, as will (interior) C∞-
rings with corners. Sometimes it is helpful to suppose that objects of A are sets
with extra structure, so there is a faithful functor A → Sets taking each object
to its underlying set. We use presheaves and sheaves and the facts that follow
to define and study local C∞-ringed spaces and C∞-schemes.

Definition 2.34 A presheaf E on a topological space X valued in A gives an
object E(U) ∈ A for every open set U ⊆ X , and a morphism ρUV : E(U) →
E(V ) in A called the restriction map for every inclusion V ⊆ U ⊆ X of open
sets, satisfying the conditions that

(i) ρUU = idE(U) : E(U) → E(U) for all open U ⊆ X; and
(ii) ρUW = ρVW ◦ ρUV : E(U) → E(W ) for all open W ⊆ V ⊆ U ⊆ X .

A presheaf E is called a sheaf if for all open covers {Ui}i∈I of U , then

E(U) →
∏
i∈I

E(Ui) ⇒
∏
i,j∈I

E(Ui ∩ Uj)

forms an equalizer diagram in A. This implies the following.

(iii) E(∅) = 0, where 0 is the final object in A.
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If there is a faithful functor F : A → Sets taking an object of A to its
underlying set that preserves limits, then a presheaf E valued in A on X is a
sheaf if it equivalently satisfies the following.

(iv) (Uniqueness.) If U ⊆ X is open, {Vi : i ∈ I} is an open cover of U ,
and s, t ∈ F (E(U)) with F (ρUVi

)(s) = F (ρUVi
)(t) in F (E(Vi)) for all

i ∈ I , then s = t in F (E(U)).
(v) (Gluing.) If U ⊆ X is open, {Vi : i ∈ I} is an open cover of U , and we are

given elements si ∈ F (E(Vi)) for all i ∈ I such that F (ρVi(Vi∩Vj))(si) =

F (ρVj(Vi∩Vj))(sj) in F (E(Vi ∩ Vj)) for all i, j ∈ I , then there exists
s ∈ F (E(U)) with F (ρUVi

)(s) = si for all i ∈ I .

If s ∈ F (E(U)) and V ⊆ U is open we write s|V = F (ρUV )(s).
If E ,F are presheaves or sheaves valued in A on X , then a morphism φ :

E → F is a morphism φ(U) : E(U) → F(U) in A for all open U ⊆ X such
that the following diagram commutes for all open V ⊆ U ⊆ X

E(U)
φ(U)

��

ρUV��

F(U)

ρ′
UV ��

E(V )
φ(V ) �� F(V ),

where ρUV is the restriction map for E , and ρ′UV the restriction map for F . We
write PreSh(X,A) and Sh(X,A) for the categories of presheaves and sheaves
on a topological space X valued in A.

Definition 2.35 For E a presheaf valued in A on a topological space X , then
we can define the stalk Ex ∈ A at a point x ∈ X to be the direct limit of the
E(U) in A for all U ⊆ X with x ∈ U , using the restriction maps ρUV .

If there is a faithful functor F : A → Sets taking an object of A to its
underlying set that preserves colimits, then explicitly it can be written as a set
of equivalence classes of sections s ∈ F (E(U)) for any open U which contains
x, where the equivalence relation is such that s1 ∼ s2 for s1 ∈ F (E(U)) and
s2 ∈ F (E(V )) with x ∈ U, V if there is an open set W ⊂ V ∩ U with x ∈ W

and s1|W = s2|W in F (E(W )).
The stalk is an object of A, and the restriction morphisms give rise to mor-

phisms ρU,x : E(U) → Ex. A morphism of presheaves φ : E → F induces
morphisms φx : Ex → Fx for all x ∈ X . If E ,F are sheaves then φ is an
isomorphism if and only if φx is an isomorphism for all x ∈ X .

Definition 2.36 There is a sheafification functor PreSh(X,A) → Sh(X,A),
which is left adjoint to the inclusion Sh(X,A) ↪→ PreSh(X,A). We write Ê
for the sheafification of a presheaf E . The adjoint property gives a morphism
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π : E → Ê and a universal property: whenever we have a morphism φ : E → F
of presheaves on X and F is a sheaf, then there is a unique morphism φ̂ : Ê →
F with φ = φ̂ ◦ π. Thus sheafification is unique up to canonical isomorphism.

Sheafifications always exist for our categoriesA, and there are isomorphisms
of stalks Ex

∼= Êx for all x ∈ X . If there is a faithful functor F : A → Sets

taking an object of A to its underlying set that preserves colimits and limits, it
can be constructed (as in [36, Prop. II.1.2]) by defining Ê(U) as the subset of all
functions t : U → 	x∈UEx such that for all x ∈ U , then t(x) = F (ρV,x)(s) ∈
Ex for some s ∈ F (E(V )) for open V ⊂ U , x ∈ V .

If f : X → Y is a continuous map of topological spaces, we can con-
sider pushforwards and pullbacks of sheaves by f . We will use both of these
definitions when defining C∞-schemes (with corners).

Definition 2.37 If f : X → Y is a continuous map of topological spaces, and
E is a sheaf valued in A on X , then the direct image (or pushforward) sheaf
f∗(E) on Y is defined by

(
f∗(E)

)
(U) = E

(
f−1(U)

)
for all openU ⊆ V . Here,

we have restriction maps ρ′UV = ρf−1(U)f−1(V ) :
(
f∗(E)

)
(U) →

(
f∗(E)

)
(V )

for all open V ⊆ U ⊆ Y so that f∗(E) is a sheaf valued in A on Y .
For a morphism φ : E → F in Sh(X,A) we can define f∗(φ) : f∗(E) →

f∗(F) by
(
f∗(φ)

)
(U) = φ

(
f−1(U)

)
for all open U ⊆ Y . This gives a mor-

phism f∗(φ) in Sh(Y,A), and a functor f∗ : Sh(X,A) → Sh(Y,A). For
two continuous maps of topological spaces, f : X → Y , g : Y → Z,
then (g ◦ f)∗ = g∗ ◦ f∗.

Definition 2.38 For a continuous map f : X → Y and a sheaf E valued
in A on Y , we define the pullback (inverse image) of E under f to be the
sheafification of the presheaf U �→ limA⊇f(U) E(A) for open U ⊆ X , where
the direct limit is taken over all open A ⊆ Y containing f(U), using the
restriction maps ρAB in E . We write this sheaf as f−1(E). If φ : E → F is
a morphism in Sh(Y,A), there is a pullback morphism f−1(φ) : f−1(E) →
f−1(F).

Remark 2.39 For a continuous map f : X → Y of topological spaces we
have functors f∗ : Sh(X,A) → Sh(Y,A), and f−1 : Sh(Y,A) → Sh(X,A).
Hartshorne [36, Ex. II.1.18] gives a natural bijection

HomX

(
f−1(E),F

) ∼= HomY

(
E , f∗(F)

)
(2.7)

for all E ∈ Sh(Y,A) and F ∈ Sh(X,A), so that f∗ is right adjoint to f−1, as
in §2.1.3. This will be important in several proofs later.
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36 Background on C∞-schemes

2.5 C∞-schemes

We recall the definition of (local) C∞-ringed spaces, following [49]. These
allow us to define a spectrum functor and C∞-schemes.

Definition 2.40 A C∞-ringed space X = (X,OX) is a topological space X
with a sheaf OX of C∞-rings on X .

A morphism f = (f, f �) : (X,OX) → (Y,OY ) of C∞ ringed spaces
consists of a continuous map f : X → Y and a morphism f � : f−1(OY ) →
OX of sheaves of C∞-rings on X , for f−1(OY ) the inverse image sheaf as in
Definition 2.38. From (2.7), we know f∗ is right adjoint to f−1, so there is a
natural bijection

HomX

(
f−1(OY ),OX

) ∼= HomY

(
OY , f∗(OX)

)
. (2.8)

We will write f� : OY → f∗(OX) for the morphism of sheaves of C∞-rings
on Y corresponding to the morphism f � under (2.8), so that

f � : f−1(OY ) −→ OX � f� : OY −→ f∗(OX). (2.9)

Given two C∞-ringed space morphisms f : X → Y and g : Y → Z we can
compose them to form

g ◦ f =
(
g ◦ f, (g ◦ f)�

)
=
(
g ◦ f, f � ◦ f−1(g�)

)
.

If we consider f� : OY → f∗(OX), then the composition is

(g ◦ f)� = g∗(f�) ◦ g� : OZ −→ (g ◦ f)∗(OX) = g∗ ◦ f∗(OX).

We call X = (X,OX) a local C∞-ringed space if it is C∞-ringed space
for which the stalks OX,x of OX at x are local C∞-rings for all x ∈ X . As
in Definition 2.19, since morphisms of local C∞-rings are automatically local
morphisms, morphisms of local C∞-ringed spaces (X,OX), (Y,OY ) are just
morphisms of C∞-ringed spaces without any additional locality condition.
Local C∞-ringed spaces are called Archimedean C∞-spaces in Moerdijk, van
Quê, and Reyes [73, §3].

We will follow the notation of [49] and write C∞RS for the category of
C∞-ringed spaces, and LC∞RS for the full subcategory of local C∞-ringed
spaces. We write underlined upper case letters such as X,Y , Z, . . . to represent
C∞-ringed spaces (X,OX), (Y,OY ), (Z,OZ), . . ., and underlined lower case
letters f, g, . . . to represent morphisms of C∞-ringed spaces (f, f �), (g, g�),

. . . . When we write ‘x ∈ X’ we mean that X = (X,OX) and x ∈ X . If we
write ‘U is open in X’ we will mean that U = (U,OU ) and X = (X,OX)

with U ⊆ X an open set and OU = OX |U .
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Here is our motivating example.

Example 2.41 For a manifold X , we have a C∞-ringed space X = (X,OX)

with topological space X and its sheaf of smooth functions OX(U) = C∞(U)

for each open subset U ⊆ X , with C∞(U) defined in Example 2.13. If V ⊆
U ⊆ X then the restriction morphisms ρUV : C∞(U) → C∞(V ) are the
usual restriction of a function to an open subset ρUV : c �→ c|V .

As the stalks OX,x at x ∈ X are local C∞-rings, isomorphic to the ring of
germs as in Example 2.25, then using partitions of unity we can show that X
is a local C∞-ringed space.

For a smooth map of manifolds f : X → Y with corresponding local C∞-
ringed spaces (X,OX), (Y,OY ) as previously we define f�(U) : OY (U) =

C∞(U) → OX(f−1(U)) = C∞(f−1(U)) for each open U ⊆ Y by f�(U) :

c �→ c ◦ f for all c ∈ C∞(U). This gives a morphism f� : OY → f∗(OX) of
sheaves of C∞-rings on Y . Then f = (f, f �) : (X,OX) → (Y,OY ) is a mor-
phism of (local) C∞-ringed spaces with f � : f−1(OY ) → OX corresponding
to f� under (2.9).

To define a spectrum functor taking a C∞-ring to an element of LC∞RS

we require the following definition.

Definition 2.42 Let C be a C∞-ring, and write XC for the set of all R-points
x of C, as in Definition 2.22. Write TC for the topology on XC that has basis
of open sets Uc =

{
x ∈ XC : x(c) = 0

}
for all c ∈ C. For each c ∈ C define

a map c∗ : XC → R such that c∗ : x �→ x(c).
For a morphism φ : C → D of C∞-rings, we can define fφ : XD → XC by

fφ(x) = x ◦ φ, which is continuous.

From [49, Lem. 4.15], this definition implies that TC is the weakest topology
on XC such that the c∗ : XC → R are continuous for all c ∈ C. Also (XC , TC)
is a regular, Hausdorff topological space. We now define the spectrum functor.

Definition 2.43 For a C∞-ring C, we will define the spectrum of C, written
SpecC. Here, SpecC is a local C∞-ringed space (X,OX), with X the topo-
logical space XC from Definition 2.42. If U ⊆ X is open then OX(U) is the
set of functions s : U →

∐
x∈U Cx, where we write sx for the image of x under

s, such that around each point x ∈ U there is an open subset x ∈ W ⊆ U and
element c ∈ C with sy = πy(c) ∈ Cy for all y ∈ W . This is a C∞-ring with
the operations Φf on OX(U) defined using the operations Φf on Cx for x ∈ U .

For s ∈ OX(U), the restriction map of functions s �→ s|V for open V ⊆
U ⊆ X is a morphism of C∞-rings, giving the restriction map ρUV : OX(U)
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38 Background on C∞-schemes

→ OX(V ). The stalk OX,x at x ∈ X is isomorphic to Cx, which is a local
C∞-ring. Hence (X,OX) is a local C∞-ringed space.

For a morphism φ : C → D of C∞-rings, we have an induced morphism of
local C∞-rings, φx : Cfφ(x) → Dx. If we let (X,OX) = SpecC, (Y,OY ) =

SpecD, then for open U ⊆ X define (fφ)�(U) : OX(U) → OY (f
−1
φ (U))

by (fφ)�(U)s : x �→ φx(sfφ(x)). This gives a morphism (fφ)� : OX →
(fφ)∗(OY ) of sheaves of C∞-rings on X . Then fφ = (fφ, f

�
φ) : (Y,OY ) →

(X,OX) is a morphism of local C∞-ringed spaces, where f �
φ corresponds

to (fφ)� under (2.9). Then Spec is a functor C∞Ringsop → LC∞RS,
called the spectrum functor, where Specφ : SpecD → SpecC is defined
by Specφ = fφ.

This definition of spectrum functor is different to the classical Algebraic
Geometry version [36, §II.2], as the topological space corresponds only to
maximal ideals of the C∞-ring, instead of also including all prime ideals. In
this sense, it is coarser; however, this corresponds to the topology of a manifold
as in the following example.

Example 2.44 For a manifoldX then SpecC∞(X) is isomorphic to the local
C∞-ringed space X constructed in Example 2.41.

Here is [49, Lem 4.28] which shows how the spectrum functor behaves with
respect to localizations and open sets. A proof is contained in [25, Lem 2.4.6],
which relies on the existence of bump functions for Rn.

Lemma 2.45 Let C be a C∞-ring, set X = SpecC = (X,OX), and let
c ∈ C. If we write Uc = {x ∈ X : x(c) = 0} as in Definition 2.42, then
Uc ⊆ X is open and Uc = (Uc,OX |Uc

) ∼= SpecC(c−1).

We now define the global sections functor and describe its relationship to the
spectrum functor.

Definition 2.46 The global sections functor Γ : LC∞RS → C∞Ringsop

takes (X,OX) to OX(X) and morphisms (f, f �) : (X,OX) → (Y,OY ) to
Γ : (f, f �) �→ f�(Y ), for f� relating f � as in (2.9).

For each C∞-ring C we can define a morphism ΞC : C → Γ ◦ SpecC.
Here, for c ∈ C then ΞC(c) : XC →

∐
x∈XC

Cx is defined by ΞC(c)x =

πx(c) ∈ Cx, so ΞC(c) ∈ OXC
(XC) = Γ ◦ SpecC. This ΞC is a C∞-ring

morphism as it is built from C∞-ring morphisms πx : C → Cx, and the
C∞-operations on OXC

(XC) are defined pointwise in the Cx. This defines a
natural transformation Ξ : IdC∞Rings ⇒ Γ ◦ Spec of functors C∞Rings →
C∞Rings.
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2.6 Complete C∞-rings 39

Theorem 2.47 The functor Spec : C∞Ringsop → LC∞RS is right
adjoint to Γ : LC∞RS → C∞Ringsop, and Ξ is the unit of the ad-
junction. This implies that Spec preserves limits as in §2.1.3. Hence if we
have C∞-ring morphisms φ : F → D, ψ : F → E in C∞Rings then
their pushout C = D 	F E has image that is isomorphic to the fibre prod-
uct SpecC ∼= SpecD×SpecF SpecE.

We extend this theorem to C∞-schemes with corners in §5.3.

Remark 2.48 Our definition of spectrum functor follows [49] and Dubuc
[23], and is called the Archimedean spectrum in Moerdijk et al. [73, §3]. They
also show it is a right adjoint to the global sections functor as above.

Definition 2.49 Objects X ∈ LC∞RS that are isomorphic to SpecC for
some C ∈ C∞Rings are called affine C∞-schemes. Elements X ∈ LC∞RS

that are locally isomorphic to SpecC for some C ∈ C∞Rings (depending
upon the open sets) are called C∞-schemes.

We define C∞Sch and AC∞Sch to be the full subcategories of C∞-
schemes and affine C∞-schemes in LC∞RS respectively.

Remark 2.50 (a) Unlike ordinary Algebraic Geometry, affine C∞-schemes
are very general objects. All manifolds are affine, and all their fibre products are
affine. But not all manifolds with corners are affine C∞-schemes with corners.

(b) (Alternatives to C∞-schemes.) We briefly review other generalizations
of manifolds similar to C∞-schemes. Such generalizations usually fall into a
‘maps out’ (based on maps X → R) or a ‘maps in’ (based on maps Rn → X)
approach. C∞-algebraic geometry uses ‘maps out’, as do the C∞-different-
iable spaces of Navarro González and Sancho de Salas [77], which form a
subcategory of C∞-schemes. Sikorski [84], Spallek [86], Buchner et al. [9]
and González and Sancho de Salas [77] describe other ‘maps out’ approaches.

‘Maps in’ approaches include the diffeological spaces of Souriau [85] and
Iglesias-Zemmour [39], and the various Chen spaces from Chen [15, 16, 17,
18]. Usually ‘maps out’ approaches deal well with finite limits, and ‘maps in’
approaches work well for infinite-dimensional spaces and quotient spaces.

2.6 Complete C∞-rings

In ordinary Algebraic Geometry, if A is a commutative ring then Γ◦SpecA ∼=
A, and Spec : Ringsop → ASch is an equivalence of categories, with inverse
Γ. For C∞-rings C, in general Γ ◦ SpecC ∼= C, and Spec : C∞Ringsop →
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AC∞Sch is neither full nor faithful. But as in [49, Prop. 4.34], we have the
following.

Proposition 2.51 For each C∞-ring C, SpecΞC : Spec ◦Γ ◦ SpecC →
SpecC is an isomorphism in LC∞RS.

This motivates the following definition [49, Def. 4.35].

Definition 2.52 A C∞-ring C is called complete if ΞC : C → Γ◦SpecC is an
isomorphism. We defineC∞Ringsco to be the full subcategory inC∞Rings

of complete C∞-rings. By Proposition 2.51 we see that C∞Ringsco is equiv-
alent to the image of the functor Γ ◦ Spec : C∞Rings → C∞Rings, which
gives a left adjoint to the inclusion of C∞Ringsco into C∞Rings. Write
this left adjoint as the functor Πco

all = Γ ◦ Spec : C∞Rings → C∞Ringsco.

An example of a non-complete C∞-ring is the quotient C = C∞(Rn)/Ics
of C∞(Rn) for n > 0 by the ideal Ics of compactly supported functions, and
Πco

all(C) = 0 ∼= C. The next theorem comes from [49, Prop. 4.11 and Th. 4.25].

Theorem 2.53 (a) Spec |(C∞Ringsco)op : (C∞Ringsco)
op → LC∞RS is

full and faithful, and an equivalence (C∞Ringsco)
op → AC∞Sch.

(b) Let X be an affine C∞-scheme. Then X ∼= SpecOX(X), where OX(X)

is a complete C∞-ring.

(c) The functor Πco
all : C

∞Rings → C∞Ringsco is left adjoint to the inclu-
sion functor inc : C∞Ringsco ↪→ C∞Rings. That is, Πco

all is a reflection
functor.

(d) All small colimits exist in C∞Ringsco, although they may not coincide
with the corresponding small colimits in C∞Rings.

(e) Spec |(C∞Ringsco)op = Spec ◦ inc : (C∞Ringsco)
op → LC∞RS is

right adjoint to Πco
all ◦Γ : LC∞RS → (C∞Ringsco)

op. Thus Spec |··· takes
limits in (C∞Ringsco)

op (equivalently, colimits in C∞Ringsco) to limits
in LC∞RS.

Using (a), that small limits exist in the category of C∞Rings, and that
Γ : LC∞RS → C∞Rings is a left adjoint with image in (C∞Ringsco)

op

when restricted to AC∞Sch, then small limits in C∞Ringsco exist and
coincide with small limits in C∞Rings. As (C∞Ringsco)

op → AC∞Sch

is an equivalence of categories, then AC∞Sch also has all small colimits
and small limits. As Spec is a right adjoint, then limits in AC∞Sch coincide
with limits in C∞Sch and LC∞RS; however, it is not necessarily true that
colimits in AC∞Sch coincide with colimits in C∞Sch and LC∞RS.
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In the following theorem we summarize results found in Dubuc [23, Th. 16],
Moerdijk and Reyes [74, § II. Prop. 1.2], and the second author [49, Cor. 4.27].

Theorem 2.54 There is a full and faithful functor FAC∞Sch
Man : Man →

AC∞Sch that takes a manifold X to the affine C∞-scheme X = (X,OX),
where OX(U)=C∞(U) is the usual smooth functions on U . Here (X,OX)∼=
Spec(C∞(X)) and hence X is affine. The functor FAC∞Sch

Man sends transverse
fibre products of manifolds to fibre products of C∞-schemes.

2.7 Sheaves of OX-modules on C∞-ringed spaces

This section follows [49, §5.3], where we give the basics of sheaves of OX -
modules for C∞-ringed spaces. This includes the pullback of a sheaf of mod-
ules and the cotangent sheaf. Our definition of OX -module is the usual defi-
nition of sheaf of modules on a ringed space as in Hartshorne [36, §II.5] and
Grothendieck [35, §0.4.1], using the R-algebra structure on our C∞-rings. The
cotangent sheaf uses the cotangent modules of §2.3.

Definition 2.55 For each C∞-ringed space X = (X,OX) we define a cat-
egory OX -mod. The objects are sheaves of OX -modules (or simply OX -
modules) E on X . Here, E is a functor on open sets U ⊆ X such that E :

U �→ E(U) in OX(U)-mod is a sheaf as in Definition 2.34. This means we
have linear restriction maps EUV : E(U) → E(V ) for each inclusion of open
sets V ⊆ U ⊆ X , such that the following commutes:

OX(U)× E(U)

ρUV ×EUV��

�� E(U)

EUV ��
OX(V )× E(V ) �� E(V ),

where the horizontal arrows are module multiplication. Morphisms in OX -mod
are sheaf morphisms φ : E → F commuting with the OX -actions. An OX -
module E is called a vector bundle if it is locally free, that is, around every
point there is an open set U ⊆ X with E|U ∼= OX |U ⊗R Rn.

Definition 2.56 We define the pullback f∗(E) of a sheaf of modules E on
Y by a morphism f = (f, f �) : X → Y of C∞-ringed spaces as f∗(E) =

f−1(E) ⊗f−1(OY ) OX . Here f−1(E) is as in Definition 2.38, so that f∗(E)
is a sheaf of modules on X . Morphisms of OY -modules φ : E → F give
morphisms of OX -modules f∗(φ) = f−1(φ)⊗ idOX

: f∗(E) → f∗(F).
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Definition 2.57 Let X = (X,OX) be a C∞-ringed space. Define a presheaf
PT ∗X of OX -modules on X such that PT ∗X(U) is the cotangent module
ΩOX(U) of Definition 2.29, regarded as a module over the C∞-ring OX(U).
For open sets V ⊆ U ⊆ X we have restriction morphisms ΩρUV

: ΩOX(U) →
ΩOX(V ) associated to the morphisms of C∞-rings ρUV : OX(U) → OX(V )

so that the following commutes:

OX(U)× ΩOX(U)

ρUV ×ΩρUV��

μOX (U)

�� ΩOX(U)

ΩρUV ��
OX(V )× ΩOX(V )

μOX (V ) �� ΩOX(V ).

Definition 2.29 implies Ωψ◦φ = Ωψ ◦ Ωφ, so this is a well defined presheaf of
OX -modules. The cotangent sheaf T ∗X of X is the sheafification of PT ∗X .

The universal property of sheafification shows that for open U ⊆ X we have
an isomorphism of OX |U -modules

T ∗U = T ∗(U,OX |U ) ∼= T ∗X|U .

For f : X → Y in C∞RS we have f∗(T ∗Y ) = f−1(T ∗Y ) ⊗f−1(OY ) OX .
The universal properties of sheafification imply that f∗(T ∗Y ) is the sheafifica-
tion of the presheaf P(f∗(T ∗Y )), where

U �−→ P(f∗(T ∗Y ))(U) = limV⊇f(U) ΩOY (V ) ⊗OY (V ) OX(U).

This gives a presheaf morphism PΩf : P(f∗(T ∗Y )) → PT ∗X on X , where

(PΩf )(U) = limV⊇f(U)(Ωρf−1(V )U◦f	(V ))∗.

Here, we have morphisms f�(V ) : OY (V ) → OX(f−1(V )) from f� : OY →
f∗(OX) corresponding to f � in f as in (2.9), and ρf−1(V )U : OX(f−1(V ))→
OX(U) in OX so that (Ωρf−1(V )U◦f	(V ))∗ : ΩOY (V ) ⊗OY (V ) OX(U) →
ΩOX(U) = (PT ∗X)(U) is constructed as in Definition 2.29. Then write Ωf :

f∗(T ∗Y ) → T ∗X for the induced morphism of the associated sheaves. This
corresponds to the morphism df : f∗(T ∗Y ) → T ∗X of vector bundles over a
manifold X and smooth map of manifolds f : X → Y as in Example 2.30.

2.8 Sheaves of OX-modules on C∞-schemes

We define the module spectrum functor MSpec as in [49, Defs. 5.16, 5.17 and
5.25], and its corresponding global sections functor, and recall their properties.

Definition 2.58 Let C be a C∞-ring and set X = (X,OX) = SpecC. Let
M ∈ C-mod be a C-module. For each open subset U ⊆ X there is a natural
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morphism C → OX(U) in C∞Rings. Using this we make M ⊗C OX(U)

into an OX(U)-module. This assignment U �→ M ⊗C OX(U) is naturally a
presheaf PMSpecM of OX -modules. Define MSpecM ∈ OX -mod to be its
sheafification.

A morphism μ : M → N in C-mod induces OX(U)-module morphisms
M ⊗C OX(U) → N ⊗C OX(U) for all open U ⊆ X , and hence a presheaf
morphism, which descends to a morphism MSpecμ : MSpecM → MSpecN

in OX -mod. This defines a functor MSpec : C-mod → OX -mod. It is an exact
functor of abelian categories.

There is also a global sections functor Γ : OX -mod → C-mod mapping
Γ : E �→ E(X), where the OX(X)-module E(X) is viewed as a C-module via
the natural morphism C → OX(X).

For any M ∈ C-mod there is a natural morphism ΞM : M → Γ◦MSpecM

in C-mod, by composing M → M ⊗C OX(X) = PMSpecM(X) with the
sheafification morphism PMSpecM(X) → MSpecM(X) = Γ◦MSpecM .
Generalizing Definition 2.52, we call M complete if ΞM is an isomorphism.
Write C-modco ⊆ C-mod for the full subcategory of complete C-modules.

Here is [49, Th. 5.19, Prop. 5.20, Th. 5.26, and Prop. 5.31].

Theorem 2.59 (a) In Definition 2.58, MSpec : C-mod → OX -mod is left
adjoint to Γ : OX -mod → C-mod, generalizing Theorem 2.47.

(b) There is a natural isomorphism MSpec ◦Γ ⇒ IdOX -mod. This gives a
natural isomorphism MSpec ◦Γ ◦ MSpec ⇒ MSpec, generalizing Proposi-
tion 2.51.

(c) MSpec |C-modco : C-modco → OX -mod is an equivalence of categories,
generalizing Theorem 2.53(a).

(d) The functor Πco
all = Γ ◦ MSpec : C-mod → C-modco is left adjoint to

the inclusion functor inc : C-modco ↪→ C-mod, generalizing Theorem 2.53(c).
That is, Πco

all is a reflection functor.

(e) There is a natural isomorphism T ∗X ∼= MSpecΩC in OX -mod.

Remark 2.60 (a) In [49, §5.4], following conventional Algebraic Geometry
as in Hartshorne [36, §II.5], the first author defined a notion of quasi-coherent
sheaf E on a C∞-scheme X , which is that we may cover X by open U ⊆ X

with U ∼= SpecC and E|U ∼= MSpecM for C ∈ C∞Rings and M ∈ C-mod.
But then [49, Cor. 5.22] uses Theorem 2.59(c) to show that everyOX -module is
quasi-coherent, that is, qcoh(X) = OX -mod, which is not true in conventional
Algebraic Geometry. So here we will not bother with the language of quasi-
coherent sheaves.
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(b) In conventional Algebraic Geometry one also defines coherent sheaves [36,
§II.5] to be OX -modules E locally modelled on MSpecM for M a finitely
generated C-module. However, as in [49, Rem. 5.23(b)], coherent sheaves
are only well-behaved on noetherian C∞-schemes, and most interesting C∞-
rings, such as C∞(Rn) for n > 0, are not noetherian. So coherent sheaves do
not seem to be a useful idea in C∞-algebraic geometry. For example, coh(X)

is not closed under kernels in OX -mod, and is not an abelian category.

Here is [49, Th. 5.32], where part (b) is deduced from Theorem 2.33.

Theorem 2.61 (a) Let f : X → Y and g : Y → Z be morphisms of C∞-
schemes. Then in OX -mod we have

Ωg◦f = Ωf ◦ f∗(Ωg) : (g ◦ f)∗(T ∗Z) −→ T ∗X.

(b) Suppose we are given a Cartesian square in C∞Sch:

W
f

��

e
��

Y

h ��
X

g
�� Z,

so that W = X ×Z Y . Then the following is exact in OW -mod:

(g◦e)∗(T ∗Z)
e∗(Ωg)⊕−f∗(Ωh) �� e∗(T ∗X)⊕f∗(T ∗Y )

Ωe⊕Ωf �� T ∗W �� 0.

2.9 Applications of C∞-rings and C∞-schemes

Since the work of Grothendieck, the theory of schemes in Algebraic Geometry
has become an enormously powerful tool, and the language in which most
modern Algebraic Geometry is written. As a result, Algebraic Geometers are
far better at dealing with singular spaces than Differential Geometers are.

It seems desirable to have a theory of schemes in Differential Geometry –
C∞-schemes, or something similar – that could in future be used for the same
purposes as schemes in Algebraic Geometry. For example, it seems very likely
that many moduli spaces M of differential-geometric objects are naturally
C∞-schemes, as well as topological spaces.

As another example, suppose (X, g) is a Riemannian manifold, and we are
interested in the moduli space M of some class of special embedded subman-
ifolds Y ⊂ X , for example, minimal, or calibrated. We could imagine trying
to define a compactification M of M by regarding submanifolds Y ⊂ X

https://doi.org/10.1017/9781009400190.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009400190.002


2.9 Applications of C∞-rings and C∞-schemes 45

as C∞-subschemes of X , and taking the closure of M in the space of C∞-
subschemes.

For the present, to the authors’ knowledge, applications of C∞-algebraic
geometry in the literature are confined to two areas: Synthetic Differential Ge-
ometry and Derived Differential Geometry, which we now discuss.

2.9.1 Synthetic Differential Geometry

Synthetic Differential Geometry is a subject in which one proves theorems
about manifolds in Differential Geometry using ‘infinitesimals’. It was used
non-rigorously in the nineteenth century by authors such as Sophus Lie. In
the 1960s William Lawvere [58] suggested a way to make it rigorous, and the
subject has since been developed in detail by Anders Kock [52, 53] and others.

One supposes that the real numbers R can be enlarged to a ‘number line’
R ⊃ R, a ring containing non-zero ‘infinitesimal’ elements x ∈ R with xn = 0

for some n > 1. An important rôle in the theory is played by the ‘double point’

D =
{
x ∈ R : x2 = 0

}
. (2.10)

One assumes smooth functions f : R → R, and manifolds X , can all be
enlarged by infinitesimals in this way. Here are examples of how these are used.

(a) If f : R → R is smooth, we can define the derivative df
dx by f(x + y) =

f(x) + y df
dx for y ∈ R with y2 = 0.

(b) If X is a manifold, the tangent bundle TX is the mapping space XD =

MapC∞(D,X).
(c) A vector field on a manifold X can be defined to be a smooth map v :

X ×D → X with v|X×{0} = idX .

The theory is developed axiomatically, with axioms on the properties of
infinitesimals, and theorems about manifolds (including classical results not
involving infinitesimals) are proved from them. The logic is unusual: since one
treats infinitesimals as ordinary points of the ‘set’ R, though it turns out that R
is not really an honest set, then only constructive logic is allowed, and the law
of the excluded middle may not be used.

For the enterprise to be at all credible, we need to know that the axioms of
Synthetic Differential Geometry are consistent, as otherwise one could prove
any statement from them, true or false. Consistency is proved by constructing a
‘model’ for Synthetic Differential Geometry, that is, a category (in fact, a topos)
of spaces C which includes Man as a full subcategory, and contains other
‘infinitesimal’ objects such as the double point D, such that the axioms can
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be interpreted as true statements in C, and thus proofs in Synthetic Differential
Geometry can be reinterpreted as reasoning (with ordinary logic) in C.

The connection to C∞-algebraic geometry is that, as in Dubuc [23] and
Moerdijk and Reyes [75], this category C may be taken to be the category
C∞Sch of C∞-schemes, with D = Spec

(
R[x]/(x2)

)
, as a C∞-subscheme

ofR. Most early work onC∞-schemes was directed towards proving properties
of C∞Sch needed to verify consistency of various sets of axioms in Synthetic
Differential Geometry.

Knowing their axioms were consistent, Synthetic Differential Geometers had
little reason to study C∞-schemes further, so the subject became inactive.

2.9.2 Derived Differential Geometry

Derived Algebraic Geometry is a generalization of classical Algebraic Geom-
etry, in which schemes (and stacks) X are replaced by derived schemes (and
derived stacks) X , which have a richer geometric structure. A derived scheme
X has a classical truncation X = t0(X), an ordinary scheme. The founda-
tions were developed in the 2000s by Bertrand Toën and Gabriele Vezzosi
[90, 91, 92] and Jacob Lurie [61, 62], and it has now become a major area in
Algebraic Geometry. Toën [90, 91] gives accessible surveys.

Quasi-smooth derived schemes are a class of derived schemes X that behave
in some ways like smooth schemes, although their classical truncations X =

t0(X) may be very singular. This is known as the ‘hidden smoothness’ philos-
ophy of Kontsevich [54]. A proper quasi-smooth derived C-scheme X has a
dimension dimC X , and a virtual class [X]virt in homology H2 dimC X(X,Z),
which is the analogue of the fundamental class of a compact complex manifold.

Quasi-smooth derived schemes have important applications in enumerative
geometry (as does the older notion of scheme with obstruction theory, which
turns out to be a semi-classical truncation of a quasi-smooth derived scheme).
Various moduli problems, such as moduli of stable coherent sheaves on a pro-
jective surface, have derived moduli schemes which are quasi-smooth, and the
virtual class is used to define invariants ‘counting’ such moduli spaces.

Two characteristic features of Derived Algebraic Geometry are as follows.

(i) Derived Algebraic Geometry is always done in ∞-categories, not ordinary
categories, as truncating to ordinary categories loses too much information.
For example, the structure sheaf OX of a derived scheme is an ∞-sheaf
(homotopy sheaf), but truncating to ordinary categories loses the sheaf
property.

(ii) To pass from smooth algebraic geometry to Derived Algebraic Geometry,
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we replace vector bundles by perfect complexes of coherent sheaves. So
a smooth scheme X has tangent and cotangent bundles TX, T ∗X , but a
derived scheme X has a tangent complex TX and cotangent complex LX ,
which are concentrated in degrees [0, 1], [−1, 0] if X is quasi-smooth.

We can now ask whether there is an analogous ‘derived’ version of Differ-
ential Geometry. In particular, can one define ‘derived manifolds’ and ‘derived
orbifolds’X which would beC∞ analogues of quasi-smooth derived schemes?
We might hope that a compact, oriented derived manifold or orbifold X would
have a well-defined dimension and virtual class in homology, and could be
applied to enumerative invariant problems in Differential Geometry.

In the last paragraph of [62, §4.5], Jacob Lurie outlined how to use his huge
framework to define an ∞-category of derived C∞-schemes, including derived
manifolds. In 2008 Lurie’s student David Spivak [87] worked out the details
of this, defining an ∞-category of derived C∞-schemes X = (X,OX) which
are topological spaces X with an ∞-sheaf OX of simplicial C∞-rings, and
a full ∞-subcategory of derived manifolds, which are derived C∞-schemes
locally modelled on fibre products X×Z Y for X,Y, Z manifolds. Spivak also
gave a list of axioms for an ∞-category of ‘derived manifolds’ to satisfy, and
showed they hold for his ∞-category.

Some years before the invention of Derived Algebraic Geometry, Fukaya–
Oh–Ohta–Ono [28, 29, 30, 31] were working on theories of Gromov–Witten
invariants and Lagrangian Floer theory in Symplectic Geometry. Their theories
involved giving moduli spaces M of J-holomorphic curves in a symplectic
manifold (X,ω) the structure of a Kuranishi space M, and defining a vir-
tual class/chain [M]virt in homology. In the 2000’s there were still significant
problems with the definition and theory of Kuranishi spaces, and the subject
was under dispute.

When the second author read Spivak’s thesis [87], he realized that Kuranishi
spaces are really derived orbifolds. This explained the problems in the theory:
vital ideas from Derived Algebraic Geometry were missing, especially the need
for higher categories, as these were unknown when Kuranishi spaces were
invented. The second author then developed theories of derived manifolds and
derived orbifolds [42, 43, 44, 45, 48, 49, 50] with a view to applications in
Symplectic Geometry, as a substitute for Fukaya–Oh–Ohta–Ono’s Kuranishi
spaces.

The second author found Spivak’s ∞-category far too complicated to work
with. So he defined a simplified version, ‘d-manifolds’ and ‘d-orbifolds’ [43,
44], which form 2-categories dMan,dOrb rather than ∞-categories. (Al-
though this would not work in Derived Algebraic Geometry, it turns out that
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2-categories are sufficient in C∞ geometry because of the existence of parti-
tions of unity.) As part of the foundations of this, he developed C∞-algebraic
geometry in new directions [42, 49], in particular OX -modules and C∞-stacks.

Later, the second author [45, 48, 50] found a definition of Kuranishi spaces
using an atlas of charts in the style of Fukaya–Oh–Ohta–Ono, which yielded
a 2-category Kur equivalent to dOrb, fixing the problems with the original
definition. This gives two different models for Derived Differential Geometry,
one starting from derived C∞-schemes, and one from Kuranishi spaces. To un-
derstand the relationship, observe that there are two ways to define manifolds.

(A) A manifold is a Hausdorff, second countable topological spaceX equipped
with a sheaf OX of R-algebras (or C∞-rings) such that (X,OX) is locally
isomorphic to Rn with its sheaf of smooth functions ORn .

(B) A manifold is a Hausdorff, second countable topological spaceX equipped
with a maximal atlas of charts {(Ui, φi) : i ∈ I}.

If we try to define derived manifolds by generalizing approach (A), we get
some kind of derived C∞-scheme, as in [6, 7, 8, 10, 11, 12, 13, 43, 44, 62,
87, 88, 89]; if we try to generalize (B), we get something like Kuranishi spaces
in [28, 29, 30, 31, 45, 48, 50].

Derived manifolds and orbifolds are interesting for many reasons, including
the following.

(a) Much of classical Differential Geometry extends nicely to the derived case.
(b) Many mathematical objects are naturally derived manifolds, for example

(i) The solution set of f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0,
where x1, . . . , xn are real variables and f1, . . . , fk are smooth func-
tions.

(ii) (Non-transverse) intersections X ∩ Y of submanifolds X,Y ⊂ Z.
(iii) Moduli spaces M of solutions of nonlinear elliptic equations on com-

pact manifolds. Also, if we consider moduli spaces M for nonlinear
equations which are elliptic modulo symmetries, and restrict to ob-
jects with finite automorphism groups, then M is a derived orbifold.

(c) A compact, oriented derived manifold (or orbifold) X has a virtual class
[X]virt in (Steenrod/Čech) homologyHvdimX(X,Z) (orHvdimX(X,Q)),
with deformation invariance properties. Combining this with (b)(iii), we
can use derived orbifolds as tools in enumerative invariant theories such as
Gromov–Witten invariants in Symplectic Geometry.

Now for applications in Symplectic Geometry, especially Lagrangian Floer
theory [28, 29] and Fukaya categories [3, 83], it is important to have a theory
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of derived orbifolds with corners. (Some applications involving ‘quilts’ also
require derived orbifolds with g-corners.) To get satisfactory notions of derived
manifold or orbifold with corners in the derived C∞-scheme approach, it is
necessary to go right back to the beginning, and introduce C∞-rings and C∞-
schemes with corners. The second author pursued these ideas with his students
Elana Kalashnikov [51] and the first author [25], which led to this book.

For further references on Derived Differential Geometry see Behrend–Liao–
Xu [6], Borisov [7], Borisov–Noel [8], Carchedi [10], Carchedi–Roytenberg
[11, 12], Carchedi–Steffens [13], and Steffens [88, 89].
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