Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:53:58.729Z Has data issue: false hasContentIssue false

Functional renormalisation group for turbulence

Published online by Cambridge University Press:  24 October 2022

Léonie Canet*
Affiliation:
Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
*
Email address for correspondence: leonie.canet@grenoble.cnrs.fr

Abstract

Turbulence is a complex nonlinear and multi-scale phenomenon. Although the fundamental underlying equations, the Navier–Stokes equations, have been known for two centuries, it remains extremely challenging to extract from them the statistical properties of turbulence. Therefore, for practical purposes, a sustained effort has been devoted to obtaining an effective description of turbulence, that we may call turbulence modelling, or statistical theory of turbulence. In this respect, the renormalisation group (RG) appears as a tool of choice, since it is precisely designed to provide effective theories from fundamental equations by performing in a systematic way the average over fluctuations. However, for Navier–Stokes turbulence, a suitable framework for the RG, allowing in particular for non-perturbative approximations, has been missing, which has thwarted RG applications for a long time. This framework is provided by the modern formulation of the RG called the functional renormalisation group (FRG). The use of the FRG has enabled important progress in the theoretical understanding of homogeneous and isotropic turbulence. The major one is the rigorous derivation, from the Navier–Stokes equations, of an analytical expression for any Eulerian multi-point multi-time correlation function, which is exact in the limit of large wavenumbers. We propose in this JFM Perspectives article a survey of the FRG method for turbulence. We provide a basic introduction to the FRG and emphasise how the field-theoretical framework allows one to systematically and profoundly exploit the symmetries. We stress that the FRG enables one to describe fully developed turbulence forced at large scales, which was not accessible by perturbative means. We show that it yields the energy spectrum and second-order structure function with accurate estimates of the related constants, and also the behaviour of the spectrum in the near-dissipative range. Finally, we expound the derivation of the spatio-temporal behaviour of $n$-point correlation functions, and largely illustrate these results through the analysis of data from experiments and direct numerical simulations.

Type
JFM Perspectives
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adzhemyan, L.T., Antonov, N.V., Barinov, V.A., Kabrits, Y.S. & Vasil'ev, A.N. 2001 Anomalous exponents to order ${\varepsilon }^{3}$ in the rapid-change model of passive scalar advection. Phys. Rev. E 63, 025303.CrossRefGoogle Scholar
Adzhemyan, L.T., Antonov, N.V. & Kim, T.L. 1994 Composite operators, operator expansion, and galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling. Theor. Math. Phys. 100, 10861099.CrossRefGoogle Scholar
Adzhemyan, L.T., Antonov, N.V. & Vasil'ev, A.N. 1998 Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar. Phys. Rev. E 58, 18231835.CrossRefGoogle Scholar
Adzhemyan, L.T., Antonov, N.V. & Vasil'ev, A.N. 1999 The Field Theoretic Renormalization Group in Fully Developed Turbulence. Gordon and Breach.Google Scholar
Antonov, N.V. 2006 Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection. J.Phys. A: Math. Gen. 39 (25), 78257865.CrossRefGoogle Scholar
Antonov, N.V., Borisenok, S.V. & Girina, V.I. 1996 Renormalisation Group approach in the theory of fully developed turbulence. Composite operators of canonical dimension 8. Theor. Math. Phys. 106, 7583.CrossRefGoogle Scholar
Balog, I., Chaté, H., Delamotte, B., Marohnić, M. & Wschebor, N. 2019 Convergence of nonperturbative approximations to the renormalization group. Phys. Rev. Lett. 123, 240604.CrossRefGoogle Scholar
Bandak, D., Eyink, G.L., Mailybaev, A. & Goldenfeld, N. 2021 Thermal noise competes with turbulent fluctuations below millimeter scales. arXiv:2107.03184.Google Scholar
Barbi, D. & Münster, G. 2013 Renormalisation group analysis of turbulent hydrodynamics. Phys. Res. Intl 2013, 872796.CrossRefGoogle Scholar
Bec, J. & Khanin, K. 2007 Burgers turbulence. Phys. Rep. 447 (1), 166.CrossRefGoogle Scholar
Bell, J.B., Nonaka, A., Garcia, A.L. & Eyink, G. 2022 Thermal fluctuations in the dissipation range of homogeneous isotropic turbulence. J.Fluid Mech. 939, A12.CrossRefGoogle Scholar
Benitez, F., Méndez-Galain, R. & Wschebor, N. 2008 Calculations on the two-point function of the $o(n)$ model. Phys. Rev. B 77 (2), 024431.CrossRefGoogle Scholar
Berges, J., Tetradis, N. & Wetterich, C. 2002 Non-perturbative Renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363 (4–6), 223386.CrossRefGoogle Scholar
Bernard, D., Gawedzki, K. & Kupiainen, A. 1996 Anomalous scaling in the N point functions of passive scalar. Phys. Rev. E 54, 25642572.CrossRefGoogle Scholar
Bernard, D., Gawedzki, K. & Kupiainen, A. 1998 Slow modes in passive advection. J.Stat. Phys. 90, 519569.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A. & Toschi, F. 1999 Multi-time, multi-scale correlation functions in turbulence and in turbulent models. Physica D 127 (3), 187197.CrossRefGoogle Scholar
Biferale, L., Calzavarini, E. & Toschi, F. 2011 Multi-time multi-scale correlation functions in hydrodynamic turbulence. Phys. Fluids 23 (8), 085107.CrossRefGoogle Scholar
Blaizot, J.-P., Méndez-Galain, R. & Wschebor, N. 2006 A new method to solve the non-perturbative renormalization group equations. Phys. Lett. B 632 (4), 571578.CrossRefGoogle Scholar
Blaizot, J.-P., Méndez-Galain, R. & Wschebor, N. 2007 Non-perturbative renormalization group calculation of the scalar self-energy. Eur. Phys. J. B 58, 297309.CrossRefGoogle Scholar
Buaria, D. & Sreenivasan, K.R. 2020 Dissipation range of the energy spectrum in high Reynolds number turbulence. Phys. Rev. Fluids 5, 092601.CrossRefGoogle Scholar
Buckmaster, T. & Vicol, V. 2019 Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Maths 189 (1), 101144.CrossRefGoogle Scholar
Burgers, J.M. 1948 A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics, vol. 1, pp. 171199. Elsevier.Google Scholar
Callan, C.G. 1970 Broken scale invariance in scalar field theory. Phys. Rev. D 2, 15411547.CrossRefGoogle Scholar
Canet, L. 2005 Strong-coupling fixed point of the Kardar-Parisi-Zhang equation. arXiv:cond-mat/0509541.Google Scholar
Canet, L., Chaté, H. & Delamotte, B. 2011 a General framework of the non-perturbative renormalization group for non-equilibrium steady states. J.Phys. A 44 (49), 495001.CrossRefGoogle Scholar
Canet, L., Chaté, H., Delamotte, B. & Wschebor, N. 2010 Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 104 (15), 150601.CrossRefGoogle Scholar
Canet, L., Chaté, H., Delamotte, B. & Wschebor, N. 2011 b Nonperturbative Renormalization Group for the Kardar–Parisi–Zhang equation: general framework and first applications. Phys. Rev. E 84, 061128.CrossRefGoogle Scholar
Canet, L., Delamotte, B. & Wschebor, N. 2015 Fully developed isotropic turbulence: symmetries and exact identities. Phys. Rev. E 91, 053004.CrossRefGoogle ScholarPubMed
Canet, L., Delamotte, B. & Wschebor, N. 2016 Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys. Rev. E 93, 063101.CrossRefGoogle ScholarPubMed
Canet, L., Rossetto, V., Wschebor, N. & Balarac, G. 2017 Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Phys. Rev. E 95, 023107.CrossRefGoogle ScholarPubMed
Chen, S. & Kraichnan, R.H. 1989 Sweeping decorrelation in isotropic turbulence. Phys. Fluids A 1 (12), 20192024.CrossRefGoogle Scholar
Chertkov, M. & Falkovich, G. 1996 Anomalous scaling exponents of a white-advected passive scalar. Phys. Rev. Lett. 76, 27062709.CrossRefGoogle ScholarPubMed
Chertkov, M., Falkovich, G., Kolokolov, I. & Lebedev, V. 1995 Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E 52, 49244941.CrossRefGoogle ScholarPubMed
Chevillard, L., Roux, S.G., Lévêque, E., Mordant, N., Pinton, J.-F. & Arnéodo, A. 2005 Intermittency of velocity time increments in turbulence. Phys. Rev. Lett. 95, 064501.CrossRefGoogle ScholarPubMed
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J.Appl. Phys. 22 (4), 469473.CrossRefGoogle Scholar
Corrsin, S. 1959 Progress report on some turbulent diffusion research. Adv. Geophys. 6, 161164.CrossRefGoogle Scholar
Corrsin, S. 1962 Theories of turbulent dispersion. In Mécanique de la Turbulence (ed. A. Favre), Colloques Internationaux du CNRS 108, pp. 27–52. Éditions du Centre National de la Recherche Scientifique, proceedings of the International Colloquium on Turbulence at the University of Aix-Marseille, 28 August-2 September, 1961.Google Scholar
Corwin, I. 2012 The Kardar–Parisi–Zhang equation and universality classes. Random Matrices 01 (01), 1130001.CrossRefGoogle Scholar
Dannevik, W.P., Yakhot, V. & Orszag, S.A. 1987 Analytical theories of turbulence and the $\epsilon$ expansion. Phys. Fluids 30 (7), 20212029.CrossRefGoogle Scholar
De Polsi, G., Balog, I., Tissier, M. & Wschebor, N. 2020 Precision calculation of critical exponents in the o(n) universality classes with the nonperturbative renormalization group. Phys. Rev. E 101, 042113.CrossRefGoogle ScholarPubMed
De Polsi, G., Hernández-Chifflet, G. & Wschebor, N. 2021 Precision calculation of universal amplitude ratios in o($n$) universality classes: derivative expansion results at order ${O}({\partial }^{4})$. Phys. Rev. E 104, 064101.CrossRefGoogle Scholar
De Polsi, G., Hernández-Chifflet, G. & Wschebor, N. 2022 The regulator dependence in the functional renormalization group: a quantitative explanation. Phys. Rev. E 106, 024111.CrossRefGoogle ScholarPubMed
Debue, P., Kuzzay, D., Saw, E.-W., Daviaud, F., Dubrulle, B., Canet, L., Rossetto, V. & Wschebor, N. 2018 Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys. Rev. Fluids 3, 024602.CrossRefGoogle Scholar
DeDominicis, C. & Martin, P.C. 1979 Energy spectra of certain randomly-stirred fluids. Phys. Rev. A 19, 419422.CrossRefGoogle Scholar
Delamotte, B. 2012 An Introduction to the nonperturbative renormalization group. Lect. Notes Phys. 852, 49132.CrossRefGoogle Scholar
Deligiannis, K., Fontaine, K., Squizzato, D., Richard, M., Ravets, S., Bloch, J., Minguzzi, A. & Canet, L. 2022 Kardar-parisi-zhang universality in discrete two-dimensional driven-dissipative exciton polariton condensates. arXiv:2207.03886.CrossRefGoogle Scholar
de Dominicis, C. 1976 Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques. J.Phys. (Paris) Colloq. 37 (C1), 247253.CrossRefGoogle Scholar
Drivas, T.D., Johnson, P.L., Lalescu, C.C. & Wilczek, M. 2017 Large-scale sweeping of small-scale eddies in turbulence: a filtering approach. Phys. Rev. Fluids 2, 104603.CrossRefGoogle Scholar
Dubrulle, B. 2019 Beyond kolmogorov cascades. J.Fluid Mech. 867, P1.CrossRefGoogle Scholar
Duclut, C. & Delamotte, B. 2017 Frequency regulators for the nonperturbative renormalization group: a general study and the model a as a benchmark. Phys. Rev. E 95, 012107.CrossRefGoogle Scholar
Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J.M., Tissier, M. & Wschebor, N. 2021 The nonperturbative functional renormalization group and its applications. Phys. Rep. 910, 1114.CrossRefGoogle Scholar
Ellwanger, U. 1994 Flow equations and BRS invariance for Yang–Mills theories. Phys. Lett. B 335, 364370.CrossRefGoogle Scholar
Eyink, G. & Goldenfeld, N. 1994 Analogies between scaling in turbulence, field theory, and critical phenomena. Phys. Rev. E 50, 46794683.CrossRefGoogle ScholarPubMed
Eyink, G.L. 1994 The renormalization group method in statistical hydrodynamics. Phys. Fluids 6 (9), 30633078.CrossRefGoogle Scholar
Falkovich, G., Fouxon, I. & Oz, Y. 2010 New relations for correlation functions in Navier–Stokes turbulence. J.Fluid Mech. 644, 465472.CrossRefGoogle Scholar
Falkovich, G., Gaweȩdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.CrossRefGoogle Scholar
Favier, B., Godeferd, F.S. & Cambon, C. 2010 On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22 (1), 015101.CrossRefGoogle Scholar
Fedorenko, A.A., Doussal, P.L. & Wiese, K.J. 2013 Functional renormalization group approach to decaying turbulence. J.Stat. Mech. 2013 (04), P04014.CrossRefGoogle Scholar
Fontaine, C., Tarpin, M., Bouchet, F. & Canet, L. 2022 Functional renormalisation group approach to shell models of turbulence. arXiv:2208.00225.Google Scholar
Forster, D., Nelson, D.R. & Stephen, M.J. 1977 Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16 (2), 732749.CrossRefGoogle Scholar
Fournier, J.D. & Frisch, U. 1983 Remarks on the renormalization group in statistical fluid dynamics. Phys. Rev. A 28, 10001002.CrossRefGoogle Scholar
Frey, E. & Täuber, U.C. 1994 Two-loop renormalization-group analysis of the Burgers–Kardar–Parisi– Zhang equation. Phys. Rev. E 50 (2), 10241045.CrossRefGoogle ScholarPubMed
Frisch, U. 1995 Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U. & Wirth, A. 1996 Inertial-diffusive range for a passive scalar advected by a white-in-time velocity field. Europhys. Lett. 35 (9), 683688.CrossRefGoogle Scholar
Gawedzki, K. & Kupiainen, A. 1995 Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 38343837.CrossRefGoogle ScholarPubMed
Gorbunova, A. 2021 Fonctions de corrélation en turbulence : simulations numériques et comparaison avec l'analyse par le groupe de renormalisation fonctionnel. PhD thesis, thèse de doctorat dirigée par Rossetto-Giaccherino, VincentBalarac, Guillaume et Canet, Léonie Physique théorique Université Grenoble Alpes 2021.Google Scholar
Gorbunova, A., Balarac, G., Bourgoin, M., Canet, L., Mordant, N. & Rossetto, V. 2020 Analysis of the dissipative range of the energy spectrum in grid turbulence and in direct numerical simulations. Phys. Rev. Fluids 5, 044604.CrossRefGoogle Scholar
Gorbunova, A., Balarac, G., Canet, L., Eyink, G. & Rossetto, V. 2021 a Spatio-temporal correlations in three-dimensional homogeneous and isotropic turbulence. Phys. Fluids 33 (4), 045114.CrossRefGoogle Scholar
Gorbunova, A., Pagani, C., Balarac, G., Canet, L. & Rossetto, V. 2021 b Eulerian spatiotemporal correlations in passive scalar turbulence. Phys. Rev. Fluids 6, 124606.CrossRefGoogle Scholar
Gotoh, T., Rogallo, R.S., Herring, J.R. & Kraichnan, R.H. 1993 Lagrangian velocity correlations in homogeneous isotropic turbulence. Phys. Fluids A 5 (11), 28462864.CrossRefGoogle Scholar
Halpin-Healy, T. 2013 a Erratum: extremal paths, the stochastic heat equation, and the three-dimensional Kardar–Parisi–Zhang universality class [Phys. Rev. E 88 (2013), 042118]. Phys. Rev. E 88, 069903.CrossRefGoogle Scholar
Halpin-Healy, T. 2013 b Extremal paths, the stochastic heat equation, and the three-dimensional Kardar–Parisi–Zhang universality class. Phys. Rev. E 88, 042118.CrossRefGoogle ScholarPubMed
Halpin-Healy, T. & Zhang, Y.-C. 1995 Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254 (4–6), 215414.CrossRefGoogle Scholar
Hayot, F. & Jayaprakash, C. 1996 Multifractality in the stochastic Burgers equation. Phys. Rev. E 54, 46814684.CrossRefGoogle ScholarPubMed
He, G.-W., Wang, M. & Lele, S.K. 2004 On the computation of space–time correlations by large-eddy simulation. Phys. Fluids 16 (11), 38593867.CrossRefGoogle Scholar
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73, 055303.CrossRefGoogle ScholarPubMed
He, X. & Tong, P. 2011 Kraichnan's random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E 83, 037302.CrossRefGoogle ScholarPubMed
Heisenberg, W. 1948 Zur statistischen theorie der turbulenz. Z. Phys. 124 (7), 628657.CrossRefGoogle Scholar
Janssen, H.-K. 1976 On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B 23, 377380.CrossRefGoogle Scholar
Janssen, H.K., Täuber, U.C. & Frey, E. 1999 Exact results for the KPZ equation with spacially correlated noise. Eur. Phys. J. B 9, 491511.CrossRefGoogle Scholar
Kaneda, Y. 1993 Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A 5 (11), 28352845.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T. & Gotoh, K. 1999 Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence. Phys. Fluids 11 (8), 21542166.CrossRefGoogle Scholar
Kardar, M., Parisi, G. & Zhang, Y.-C. 1986 Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (9), 889892.CrossRefGoogle ScholarPubMed
von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.CrossRefGoogle Scholar
Khurshid, S., Donzis, D.A. & Sreenivasan, K.R. 2018 Energy spectrum in the dissipation range. Phys. Rev. Fluids 3, 082601.CrossRefGoogle Scholar
Kloss, T., Canet, L., Delamotte, B. & Wschebor, N. 2014 a Kardar–Parisi–Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group. Phys. Rev. E 89, 022108.CrossRefGoogle ScholarPubMed
Kloss, T., Canet, L. & Wschebor, N. 2012 Nonperturbative renormalization group for the stationary Kardar–Parisi–Zhang equation: Scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Phys. Rev. E 86, 051124.CrossRefGoogle Scholar
Kloss, T., Canet, L. & Wschebor, N. 2014 b Strong-coupling phases of the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 90, 062133.CrossRefGoogle ScholarPubMed
Kopietz, P., Bartosch, L. & Schütz, F. 2010 Introduction to the Functional Renormalization Group. Lecture Notes in Physics, vol. 798. Springer.CrossRefGoogle Scholar
Kraichnan, R.H. 1964 Kolmogorov's hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11), 17231734.CrossRefGoogle Scholar
Kraichnan, R.H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8 (4), 575598.CrossRefGoogle Scholar
Kraichnan, R.H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.CrossRefGoogle Scholar
Kraichnan, R.H. 1994 Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 10161019.CrossRefGoogle ScholarPubMed
Krug, J. 1997 Origins of scale invariance in growth processes. Adv. Phys. 46 (2), 139282.CrossRefGoogle Scholar
Kupiainen, A. & Muratore-Ginanneschi, P. 2007 Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection. J.Stat. Phys. 126, 669724.CrossRefGoogle Scholar
Lesieur, M. 2008 Turbulence in Fluids, 4th edn. Springer.CrossRefGoogle Scholar
Lévêque, E., Chevillard, L., Pinton, J.-F., Roux, S., Arnéodo, A. & Mordant, N. 2007 Lagrangian intermittencies in dynamic and static turbulent velocity fields from direct numerical simulations. J.Turbul. 8, N3.CrossRefGoogle Scholar
L'vov, V. & Procaccia, I. 1995 Exact resummations in the theory of hydrodynamic turbulence. I. The ball of locality and normal scaling. Phys. Rev. E 52, 38403857.CrossRefGoogle Scholar
L'vov, V.S., Podivilov, E. & Procaccia, I. 1997 Temporal multiscaling in hydrodynamic turbulence. Phys. Rev. E 55, 70307035.CrossRefGoogle Scholar
Martin, P.C., Siggia, E.D. & Rose, H.A. 1973 Statistical dynamics of classical systems. Phys. Rev. A 8, 423437.CrossRefGoogle Scholar
Mazzino, A. 1997 Effective correlation times in turbulent scalar transport. Phys. Rev. E 56, 55005510.CrossRefGoogle Scholar
McComb, W.D. & Yoffe, S.R. 2017 A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence*. J.Phys. A 50 (37), 375501.CrossRefGoogle Scholar
McMullen, R.M., Krygier, M.C., Torczynski, J.R. & Gallis, M.A. 2022 Navier–Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. 128, 114501.CrossRefGoogle Scholar
Medina, E., Hwa, T., Kardar, M. & Zhang, Y.-C. 1989 Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth. Phys. Rev. A 39 (6), 30533075.CrossRefGoogle Scholar
Mejía-Monasterio, C. & Muratore-Ginanneschi, P. 2012 Nonperturbative renormalization group study of the stochastic Navier–Stokes equation. Phys. Rev. E 86, 016315.CrossRefGoogle Scholar
Mitra, D. & Pandit, R. 2005 Dynamics of passive-scalar turbulence. Phys. Rev. Lett. 95 (14), 144501.CrossRefGoogle ScholarPubMed
Monin, A.S. & Yaglom, A.M. 2007 Statistical Fluid Mechanics: Mechanics of turbulence. MIT Press.Google Scholar
Morris, T.R. 1994 The exact renormalisation group and approximate solutions. Intl J. Mod. Phys. A 9, 24112449.CrossRefGoogle Scholar
Nelkin, M. 1974 Turbulence, critical fluctuations, and intermittency. Phys. Rev. A 9, 388395.CrossRefGoogle Scholar
Nelkin, M. & Tabor, M. 1990 Time correlations and random sweeping in isotropic turbulence. Phys. Fluids A 2 (1), 8183.CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of temperature field in turbulent flow. Izv. Geogr. Geophys. 13 (1), 5869.Google Scholar
O'Gorman, P.A. & Pullin, D.I. 2004 On modal time correlations of turbulent velocity and scalar fields. J.Turbul. 5, N35.CrossRefGoogle Scholar
Orszag, S.A. & Patterson, G.S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.CrossRefGoogle Scholar
Pagani, C. 2015 Functional renormalization group approach to the Kraichnan model. Phys. Rev. E 92 (3), 033016, [Addendum: Phys. Rev. E 97 (4), 049902 (2018)].Google Scholar
Pagani, C. & Canet, L. 2021 Spatio-temporal correlation functions in scalar turbulence from functional renormalization group. Phys. Fluids 33 (6), 065109.CrossRefGoogle Scholar
Pagnani, A. & Parisi, G. 2015 Numerical estimate of the Kardar–Parisi–Zhang universality class in (2+1) dimensions. Phys. Rev. E 92, 010101.CrossRefGoogle ScholarPubMed
Polchinski, J. 1984 Renormalization and effective lagrangians. Nucl. Phys. B 231 (2), 269295.CrossRefGoogle Scholar
Poulain, C., Mazellier, N., Chevillard, L., Gagne, Y. & Baudet, C. 2006 Dynamics of spatial fourier modes in turbulence – sweeping effect, long-time correlations and temporal intermittency. Eur. Phys. J. B 53 (2), 219224.CrossRefGoogle Scholar
Prähofer, M. & Spohn, H. 2000 Universal distributions for growth processes in $1+1$ dimensions and random matrices. Phys. Rev. Lett. 84, 48824885.CrossRefGoogle ScholarPubMed
Prähofer, M. & Spohn, H. 2004 Exact scaling functions for one-dimensional stationary KPZ growth. J.Stat. Phys. 115 (1–2), 255279.CrossRefGoogle Scholar
Sanada, T. & Shanmugasundaram, V. 1992 Random sweeping effect in isotropic numerical turbulence. Phys. Fluids A 4 (6), 12451250.CrossRefGoogle Scholar
Sankar Ray, S., Mitra, D. & Pandit, R. 2008 The universality of dynamic multiscaling in homogeneous, isotropic Navier–Stokes and passive-scalar turbulence. New J. Phys. 10 (3), 033003.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639646.CrossRefGoogle ScholarPubMed
Smith, L.M. & Woodruff, S.L. 1998 Renormalization-group analysis of turbulence. Annu. Rev. Fluid Mech. 30 (1), 275310.CrossRefGoogle Scholar
Squizzato, D. & Canet, L. 2019 Kardar–Parisi–Zhang equation with temporally correlated noise: a nonperturbative renormalization group approach. Phys. Rev. E 100, 062143.CrossRefGoogle ScholarPubMed
Sreenivasan, K.R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.CrossRefGoogle Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. 116 (37), 1817518183.CrossRefGoogle ScholarPubMed
Symanzik, K. 1970 Small distance behaviour in field theory and power counting. Commun. Math. Phys. 18, 227–246.CrossRefGoogle Scholar
Takeuchi, K.A. 2018 An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A 504, 77105, lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics.CrossRefGoogle Scholar
Tarpin, M. 2018 Non-perturbative renormalisation group approach to some out of equilibrium systems : diffusive epidemic process and fully developped turbulence. PhD thesis, thèse de doctorat dirigée par Canet, Léonie Physique théorique Université Grenoble Alpes (ComUE) 2018.Google Scholar
Tarpin, M., Canet, L., Pagani, C. & Wschebor, N. 2019 Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach. J.Phys. A 52 (8), 085501.CrossRefGoogle Scholar
Tarpin, M., Canet, L. & Wschebor, N. 2018 Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence. Phys. Fluids 30 (5), 055102.CrossRefGoogle Scholar
Taylor, G.I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 (1), 196212.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J.Fluid Mech. 67, 561567.CrossRefGoogle Scholar
Tomassini, P. 1997 An exact renormalization group analysis of 3d well developed turbulence. Phys. Lett. B 411 (1), 117126.CrossRefGoogle Scholar
Verma, M.K. 2019 Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives. Cambridge University Press.CrossRefGoogle Scholar
Wallace, J.M. 2014 Space–time correlations in turbulent flow: a review. Theor. Appl. Mech. Lett. 4 (2), 022003.CrossRefGoogle Scholar
Wetterich, C. 1993 Exact evolution equation for the effective potential. Phys. Lett. B 301 (1), 9094.CrossRefGoogle Scholar
Wiese, K.J. 1998 On the perturbation expansion of the KPZ equation. J.Stat. Phys. 93 (1–2), 143154.CrossRefGoogle Scholar
Wilczek, M. & Narita, Y. 2012 Wave-number–frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys. Rev. E 86, 066308.CrossRefGoogle ScholarPubMed
Wilson, K.G. & Kogut, J. 1974 The renormalization group and the $\epsilon$-expansion. Phys. Rep. C 12, 75199.CrossRefGoogle Scholar
Yaglom, A.M. 1949 Über die lokale Struktur des Temperaturfeldes in einer turbulenten Strömung. Dokl. Akad. Nauk SSSR 69, 743746.Google Scholar
Yakhot, V. & Orszag, S.A. 1986 Renormalization-group analysis of turbulence. Phys. Rev. Lett. 57, 17221724.CrossRefGoogle ScholarPubMed
Yakhot, V., Orszag, S.A. & She, Z.-S. 1989 Space–time correlations in turbulence: kinematical versus dynamical effects. Phys. Fluids A 1 (2), 184186.CrossRefGoogle Scholar
Yeung, P.K. & Sawford, B.L. 2002 Random-sweeping hypothesis for passive scalars in isotropic turbulence. J.Fluid Mech. 459, 129138.CrossRefGoogle Scholar
Zhao, X. & He, G.-W. 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316.CrossRefGoogle ScholarPubMed
Zhou, Y. 2010 Renormalization group theory for fluid and plasma turbulence. Phys. Rep. 488 (1), 149.CrossRefGoogle Scholar
Zhou, Y. 2021 Turbulence theories and statistical closure approaches. Phys. Rep. 935, 1117.CrossRefGoogle Scholar
Zinn-Justin, J. 2002 Quantum Field Theory and Critical Phenomena, 4th edn. Oxford University Press.CrossRefGoogle Scholar