Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T14:53:03.943Z Has data issue: false hasContentIssue false

Matchstick Nanotubes: Structure Control and Properties

Published online by Cambridge University Press:  01 February 2011

Vincent Jourdain
Affiliation:
GDPC, Université Montpellier II, Place Eugène Bataillon, CC26, 34095 Montpellier Cedex 5, France Cambridge University, Engineering Department, Trumpington St, Cambridge CB2 1PZ, UK
Matthieu Paillet
Affiliation:
GDPC, Université Montpellier II, Place Eugène Bataillon, CC26, 34095 Montpellier Cedex 5, France
Philippe Poncharal
Affiliation:
GDPC, Université Montpellier II, Place Eugène Bataillon, CC26, 34095 Montpellier Cedex 5, France
Ahmed Zahab
Affiliation:
GDPC, Université Montpellier II, Place Eugène Bataillon, CC26, 34095 Montpellier Cedex 5, France
Annick Loiseau
Affiliation:
LEM, UMR 104 CNRS-ONERA, ONERA, BP 72, 92322 Châtillon Cedex, France
Patrick Bernier
Affiliation:
GDPC, Université Montpellier II, Place Eugène Bataillon, CC26, 34095 Montpellier Cedex 5, France
John Robertson
Affiliation:
Cambridge University, Engineering Department, Trumpington St, Cambridge CB2 1PZ, UK
Get access

Abstract

We report here on the catalyst features found critical in order to induce the growth of matchstick nanotubes by a sequential catalytic growth mechanism. The presence of phosphorus is required to form metal phosphide particles active for the formation of carbon nanotubes with a matchstick morphology. The metal composition does not influence the nanofilament type but strongly affect the nanotube yield. Original properties of these new periodic nanostructures are also highlighted, such as the preferential breaking at the thin nanomatch interjunctions, giving rise to individual nanomatches in suspension after ultrasonic treatment. The possibility to use this mechanism to insert carbon nanotubes with ferromagnetic nanoparticles is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jourdain, V., Kanzow, H., Castignolles, M., Loiseau, A., and Bernier, P., “Sequential catalytic growth of carbon nanotubes,” Chem. Phys. Lett., vol. 364, pp. 2733, 2002.Google Scholar
[2] Jourdain, V., Stéphan, O., Castignolles, M., Loiseau, A., and Bernier, P., “Controlling the morphology of multiwall carbon nanotubes by sequential catalytic growth induced by phosphorus,” Adv. Mater., vol. 16, pp. 447, 2004.Google Scholar
[3] Kuo, C. T., Lin, C. H., and Lo, A. Y., “Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media,” Diamond Rel. Mat., vol. 12, pp. 799805, 2003.Google Scholar
[4] Wolf, S. A., Awscalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnàr, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., “Spintronics: a spin-based electronics vision for the future,” Science, vol. 294, pp. 1488, 2001.Google Scholar
[5] Tsukagoshi, K., Alphenaar, B. W., and Ago, H., “Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube,” Nature, vol. 401, pp. 572574, 1999.Google Scholar
[6] Tsukagoshi, K., Alphenaar, B. W., and Wagner, M., “Spin transport in nanotubes,” Mater. Sci. Eng., B, vol. 84, pp. 2630, 2001.Google Scholar
[7] Yang, C.-K., Zhao, J., and Lu, J. P., “Magnetism of transition-metal/carbon-nanotube hybrid structures,” Phys. Rev. Lett., vol. 90, pp. 257403–1, 2003.Google Scholar
[8] Fruchart, R., Roger, A., and Senateur, J. P., “Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M=Cr, Mn, Fe, Co, and Ni,” J. Appl. Phys., vol. 40, pp. 1250, 1969.Google Scholar