Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T10:00:26.687Z Has data issue: false hasContentIssue false

Silver antimony sulfide-selenide for thin film solar cells

Published online by Cambridge University Press:  10 September 2014

Jesús Capistrán-Martínez
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México Temixco-62580, Morelos, México
M.T.S Nair
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México Temixco-62580, Morelos, México
P.K. Nair
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México Temixco-62580, Morelos, México
Get access

Abstract

Thin films of AgSbS2 (150 nm) are prepared (75 min at 40 °C) via chemical deposition using a solution mixture containing SbCl3, Na2S2O3 and AgNO3. As-deposited films are amorphous. When they are heated in nitrogen at 180-320 °C, crystalline cubic-AgSbS2 films are formed. They show an optical band gap 1.89 eV and photoconductivity 1.8x10-5 Ω-1cm-1. Silver antimony sulfide-selenide film, AgSb(SxSe1-x)2, is produced from the initial amorphous film when it is heated in presence of Se-vapor. XRD analysis confirms the formation of solid solution AgSbS1.25Se0.75 or AgSbSe2 depending on the extent of Se-vapor available during heating. SnO2:F/CdS/AgSbS2/C solar cell shows Voc 610 mV, Jsc 0.88 mA/cm2,FF 0.53 and η 0.28%. In SnO2:F/CdS/Sb2S3/AgSb(SxSe1-x)2/C solar cell, Voc is 582 mV, Jsc 0.99 mA/cm2, FF 0.51 and η 0.29%.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ibrahim, A. M., J. Phys. Condens. Matter 7, 5931 (1995).10.1088/0953-8984/7/29/019CrossRefGoogle Scholar
Wagner, T., Gutwirth, J., Nemec, P., Frumar, M., Vlcek, M., Perina, V., Mackova, A., Hnatovitz, V.. App. Phys. A. 79, 1561 (2004).10.1007/s00339-004-2847-zCrossRefGoogle Scholar
Gutwirth, J., Wagner, T., Kotulánova, E., Bezdicka, P., Perina, V., Hrdlicka, M., Vlcek, Mil, Drasar, C., Frumar, M.. J. Phys. Chem. Solids 68, 835 (2007).10.1016/j.jpcs.2007.03.030CrossRefGoogle Scholar
Houška, J., Peña-Méndez, E. M., Kolář, J., Frumar, M., Wágner, T. and Havel, J., Rapid Comm. in Mass Spectrometry 23, 1715 (2009).10.1002/rcm.4048CrossRefGoogle Scholar
Salim, Siham M., Seddek, M. B., Salem, A. M. and Islam, . J. Appl. Sci. Res. 6 1352 (2010).Google Scholar
Ho, Yi-Rong, Lee, Ming-Way. Electrochem. Comm. 26, 48 (2013).10.1016/j.elecom.2012.10.003CrossRefGoogle Scholar
Yang, W. C., Leez, M. W.. J. Electrochem. Soc. 161 H92 (2014).Google Scholar
Capistrán-Martínez, Jesus and Nair, M. T. S. and Nair, P. K.. MRS Proc. 1447 (2012).Google Scholar
Nair, P. K., Nair, M. T. S., García, V. M., Arena, O. L., Peña, Y., Castill, A., Ayala, I. T., Gomezdaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., Rincón, M. E.. J. Electrochem. Soc. 145, 2113 (1998).10.1149/1.1838605CrossRefGoogle Scholar
Nair, M.T.S., Nair, P. K., Zingaro, R. A., Meyers, E. A.. J. Appl. Phys. 75, 1557 (1994).10.1063/1.356391CrossRefGoogle Scholar
Messina, Sarah, Nair, M. T. S., Nair, P. K.. Thin Solid Films 515, 5777 (2007).10.1016/j.tsf.2006.12.155CrossRefGoogle Scholar
Madelung, O., Semiconductors Data Hand Book, Springer, 3rd Ed. 2004 pp. 645652.10.1007/978-3-642-18865-7_29CrossRefGoogle Scholar