Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T14:11:54.049Z Has data issue: false hasContentIssue false

x-ray Surface Scattering Studies of Molecular Ordering at Liquid-Liquid Interfaces

Published online by Cambridge University Press:  10 February 2011

Mark L. Schlossman
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607, schloss@uic.edu
Ming Li
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607, schloss@uic.edu
Dragoslav M. Mitrinovic
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607, schloss@uic.edu
Aleksey M. Tikhonov
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607, schloss@uic.edu
Get access

Abstract

We present our recent progress in using synchrotron x-ray surface scattering techniques to study several different aspects of ordering at liquid-liquid interfaces. (1) We present measurements of the interfacial width at the water-alkane interface for a series of different chain length alkanes. The width for the shortest chain length studied is in agreement with capillary wave theory. However, significant deviations occur for longer chain lengths, indicating the presence of molecular ordering at the interface. (2) Under appropriate conditions, a surfactant monolayer forms at the interface between water and a hexane solution of a fluorinated surfactant. Reflectivity measurements that probe the electron density profile normal to the interface provide information about the surfactant ordering. This monolayer undergoes a solid to gas transition as a function of temperature. Diffuse scattering near the transition reveals the presence of islands. (3) Equilibrium interfaces between two aqueous phases containing PEG (polyethylene glycol) and potassium phosphate salts can be studied. We present studies of coherent capillary wave fluctuations between two interfaces of a thin film of this biphase system. We also demonstrate that biological macromolecules can be trapped and studied at this aqueous-aqueous interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grubb, S.G., Kim, M.W., Rasing, T. and Shen, Y.R., Langmuir 4, 452 (1988).10.1021/la00080a035Google Scholar
2. Conboy, J.C., Daschbach, J.L. and Richmond, G.L., Appl. Phys. A 59, 623 (1994).10.1007/BF00331923Google Scholar
3. Naujok, R.R., Higgins, D.A., Hanken, D.G. and Corn, R.M., J. Chem. Soc., Faraday Trans. 91, 1411 (1995).10.1039/ft9959101411Google Scholar
4. Lee, L.T., Langevin, D. and Farnoux, B., Phys. Rev. Lett. 67, 2678 (1991).10.1103/PhysRevLett.67.2678Google Scholar
5. Phipps, J.S., Richardson, R.M., Cosgrove, T. and Eaglesham, A., Langmuir 9, 3530 (1993).10.1021/la00036a031Google Scholar
6. McClain, B.R. et al. , Phys. Rev. Lett. 72, 246 (1994).10.1103/PhysRevLett.72.246Google Scholar
7. Mitrinovic, D.M., Zhang, Z., Williams, S.M., Huang, Z. and Schlossman, M.L., J. Phys. Chem. 103, 1779 (1999).10.1021/jp984640oGoogle Scholar
8. Zhang, Z., Mitrinovic, D.M., Williams, S.M., Huang, Z. and Schlossman, M.L., J. Chem. Phys. 110, 7421 (1999).10.1063/1.478644Google Scholar
9. Schlossman, M.L. et al. , Rev. Sci. Instrum. 68, 4372 (1997).10.1063/1.1148399Google Scholar
10. Buuren, A.R.v., Marrink, S.-J. and Berendsen, H.J.C., J. Phys. Chem. 97, 9206 (1993).10.1021/j100138a023Google Scholar
11. Pershan, P.S., Far. Disc. Chem. Soc. 89, 231 (1990).10.1039/dc9908900231Google Scholar
12. Buff, F.P., Lovett, R.A. and Stillinger, F.H., Phys. Rev. Lett. 15, 621 (1965).10.1103/PhysRevLett.15.621Google Scholar
13. Sinha, S.K., Sirota, E.B., Garoff, S. and Stanley, H.B., Phys. Rev. B 38, 2297 (1988).10.1103/PhysRevB.38.2297Google Scholar
14. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).Google Scholar
15. Weeks, J.D., J. Chem. Phys. 67, 3106 (1977).10.1063/1.435276Google Scholar
16. Braslau, A. et al. , Phys. Rev. Lett. 54, 114 (1985).10.1103/PhysRevLett.54.114Google Scholar
17. Schlossman, M.L., in Encyclopedia of Applied Physics (ed. Trigg, G.L.) (VCH Publishers, New York, 1997) pp. 311336.Google Scholar
18. Gelfand, M.P. and Fisher, M.E., Physica A 166, 1 (1990).10.1016/0378-4371(90)90099-EGoogle Scholar
19. Goebel, A. and Lunkenheimer, K., Langmuir 13, 369 (1997).10.1021/la960800gGoogle Scholar
20. Yue, B.Y., Jackson, C.M., Taylor, J.A.G., Mingins, J. and Pethica, B.A., J. Chem. Soc. Faraday I 72, 2685 (1976).10.1039/f19767202685Google Scholar
21. Messmer, M.C., Conboy, J.C. and Richmond, G.L., J. Am. Chem. Soc. 117, 8039 (1995).10.1021/ja00135a032Google Scholar
22. Richmond, G.L., Analytical Chemistry 69, 536A (1997).10.1021/ac9717649Google Scholar
23. Hayami, Y., Uemura, A., Ikeda, N., Aratono, M. and Motomura, K., J. Coll. Int. Sci. 172, 142 (1995).10.1006/jcis.1995.1236Google Scholar
24. Takiue, T. et al. , J. Phys. Chem. 100, 20122 (1996).10.1021/jp9623554Google Scholar
25. Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford, 1980).Google Scholar
26. Schwickert, H., Strobl, G. and Kimmig, M., J. Chem. Phys. 95, 2800 (1991).10.1063/1.460931Google Scholar
27. Starkweather, H.W., Macromolecules 19, 1131 (1986).10.1021/ma00158a034Google Scholar
28. Becker, R.S., Golovchenko, J.A. and Patel, J.R., Phys. Rev. Lett. 50, 153 (1983).10.1103/PhysRevLett.50.153Google Scholar
29. Dietrich, S. and Wagner, H., Z. Phys. B 56, 207 (1984).10.1007/BF01304174Google Scholar
30. Yoneda, Y., Phys. Rev. 131, 2010 (1963).10.1103/PhysRev.131.2010Google Scholar
31. Schlossman, M.L. and Pershan, P.S., in Light Scattering by Liquid Surfaces and Complementary Techniques (ed. Langevin, D.) (Marcel Dekker Inc., New York, 1992) pp. 365403.Google Scholar
32. In collaboration with David Chaiko (Argonne National Laboratory).Google Scholar