Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T20:51:38.053Z Has data issue: false hasContentIssue false

Diffusion Lengths in a-SiGe:H and a-SiC:H Alloys from Optical Grating Technique

Published online by Cambridge University Press:  26 February 2011

G. H. Bauer
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F.R. Germany
C. E. Nebel
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F.R. Germany
H.-D. Mohring
Affiliation:
Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F.R. Germany
Get access

Abstract

Ambipolar diffusion lengths in a-SiGe:H and a-SiC:H have been analyzed by Steady State Photocarrier Grating Technique. Diffusion lengths and photoconductivity of a-Si:H are considerably affected by alloying. Photoconductivity in a-SiGe:H can be improved by special deposition methods, diffusion lengths, however turn out to remain nearly unchanged. The comparison of diffusion lengths and -ho~oconductivity yields hole mobilities in a-Si1-xGex:H of 10-2cm2 /Vs for O≤×≤O.2. For a-Si:H changes in photoconductivity by generation of defects (light soaking) result in noticeable changes in diffusion lengths, whereas different photoconductivities in a-SiGe:H caused by different deposition methods end up in the same diffusion lengths. Consequently the improvement of a-SiGe:H photoconductivity by changes in deposition condition is by far a much more complex process than only decrease of density of midgap states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresner, J., Szostal, D.J., Goldstein, B., Appl. Phys. Lett. 38, 998 (1981).CrossRefGoogle Scholar
2: Moore, A.R., Appl. Phys. Lett. 40, 403 (1982).CrossRefGoogle Scholar
3. Moore, A.R., J. Appl. Phys. 56, 2796 (1984).CrossRefGoogle Scholar
4. Foller, M., Herion, J., Beyer, W., Wagner, H., J. Noncryst. Sol. 97/98,567 (1987).Google Scholar
5. Ritter, D., Zeldov, E., Weiser, K., Appl. Phys. Lett. 49, 79 (1986).CrossRefGoogle Scholar
6. Ritter, D., Weiser, K., Zeldov, E., J. Appl. Phys. 62, 4563 (1987).CrossRefGoogle Scholar
7. Ritter, D., Zeldov, E., Weiser, K., J. Noncryst. Sol. 97/98, 571 (1987).CrossRefGoogle Scholar
8. Paasche, S.M., Bauer, G.H., J. Noncryst. Sol. 77/78, 1433 (1985).Google Scholar
9. Weller, H.C., Paasche, S.M., Nebel, C.E., Bauer, G.H., Conf. Rec.19 IEEE Photov.Spec.Conf., IEEE New York (1987), p.872Google Scholar
10. Weller, H.C., Paasche, S.M., Nebel, C.E., Bauer, G.H., J. Noncryst. Sol. 97/98, 1017 (1987).Google Scholar
11. Bauer, G.H., Nebel, C.E., Proc. Int. Workshop on Appl. Amorph. Silicon, Torino (I) 1987, to be publ. in World Scientific Press.Google Scholar
12. Nebel, C.E., Bauer, G.H., Proc. 8 EC Photov. Sol. En. Conf., Florence (I), 1988, to be publ. by Reidel, Dordrecht (NL).Google Scholar
13. Schumm, G., Nitsch, K., Schubert, M.B., Bauer, G.H., this issue.Google Scholar
14. Glade., A. Beichler, W., Mell, H., J. Noncryst. Sol. 77/78, 397 (1985).Google Scholar
15. Nebel, C.E., Weller, H.C., Bauer, G.H., this issue.Google Scholar