We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Since the discovery of the magnetosphere-magnetotail system in the1950s-1960s), and the associated beginning of the satellite era, we have gained a well-informed understanding of this space plasma region permeated by the geomagnetic field and home to a variety of charged particle populations and plasma waves. Over the last six decades, IAGA has played an important role in supporting international magnetospheric research. Here we provide an overview of recent developments in energy transport from the solar wind into the Earth’s environment. Topics include, magnetosphere energy input, the role of the boundary layer. Solar wind interaction with the magnetosphere creates geomagnetic activity and the response of the region leading to sub-storms and steady magnetospheric convection are discussed. The charged particle energy (eV to MeV) inherent/contained in the magnetospheric ring current and Van Allen radiation belts establish many properties of the region, giving rise to boundary regions and waves. Results from recent state of the art and currently operating Earth orbiting satellites (Cluster, THEMIS, Van Allen Probes, Magnetosphere MultiScale), are providing exciting new results. Waves from magnetospheric scale ultra-low frequency (ULF) from a few milliHertz, up to upper hybrid waves and continuum radiation in the 1-2 MHz band. Finally, current understanding of the plasmasphere and associated boundary the plasmapause, are considered.
Scientific results about space physics in the solar system and obtained from space missions are presented, concentrating on observations from the past decade. After giving the most exhaustive possible list of missions having journeyed in the solar system these past twenty years, the paper presents new insights gathered on the solar wind focusing in particular on results obtained with SOHO, STEREO, ACE and Wind. Then, new results are also presented regarding the terrestrial space environment focusing specifically on data gathered by Cluster, Polar, THEMIS, GEOTAIL and Double Star.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.