Let n,
$N \in {\open N}$
with
$\Omega \subseteq {\open R}^n$
open. Given
${\rm H} \in C^2(\Omega \times {\open R}^N \times {\open R}^{Nn})$
, we consider the functional
1
$${\rm E}_\infty (u,{\rm {\cal O}})\, : = \, \mathop {{\rm ess}\,\sup}\limits_{\rm {\cal O}} {\rm H}(\cdot ,u,{\rm D}u),\quad u\in W_{{\rm loc}}^{1,\infty} (\Omega ,{\open R}^N),\quad {\rm {\cal O}}{\Subset}\Omega.$$
The associated PDE system which plays the role of Euler–Lagrange equations in
$L^\infty $
is
2
$$\left\{\matrix{{\rm H}_{P}(\cdot, u, {\rm D}u)\, {\rm D}\left({\rm H}(\cdot, u, {\rm D} u)\right) = \, 0, \hfill \cr {\rm H}(\cdot, u, {\rm D} u) \, [\![{\rm H}_{P}(\cdot, u, {\rm D} u)]\!]^\bot \left({\rm Div}\left({\rm H}_{P}(\cdot, u, {\rm D} u)\right)- {\rm H}_{\eta}(\cdot, u, {\rm D} u)\right) = 0,\hfill}\right.$$
where
$[\![A]\!]^\bot := {\rm Proj}_{R(A)^\bot }$
. Herein we establish that generalised solutions to (
2) can be characterised as local minimisers of (
1) for appropriate classes of affine variations of the energy. Generalised solutions to (
2) are understood as
${\cal D}$
-solutions, a general framework recently introduced by one of the authors.