We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In neutrally stratified shallow water, full-depth Langmuir cells (LCs) can interact with the turbulent benthic boundary layer and, thus, influence bottom wall shear stresses. In this paper the impacts of full-depth LCs on the streamwise and spanwise wall shear stresses are systematically studied using the database obtained from wall-resolved large-eddy simulation of shallow-water Langmuir turbulence. Analyses focus on the instantaneous wall shear stress fluctuations and the joint probability density functions between the stress fluctuations and the LCs parts of the velocity fluctuations, which show that the linear superimposition effect and nonlinear modulation effect of LCs are responsible for the spanwise organized distribution of wall shear stress fluctuations. Compared with the statistics in pure shear-driven turbulence without LCs, the mean square values of wall shear stress fluctuations in shallow-water Langmuir turbulence are enhanced by the strong linear superimposition effect of LCs, while the skewness and kurtosis are reduced by the combination of the linear superimposition effect and nonlinear modulation effect of LCs. Based on the scalings of these effects, a new predictive model of wall shear stress fluctuations is proposed for shallow-water Langmuir turbulence. The proposed model can predict the spatial distribution and statistics of wall shear stress fluctuations using the LCs parts of velocity fluctuations measured above the water bottom. Owing to the persistence of the spanwise inhomogeneity of wall shear stresses induced by full-depth LCs, the new predictive model will be useful for improving the wall-layer modelling for shallow-water Langmuir turbulent flows.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
Evidence of couples’ BMI and its influence on birth weight is limited and contradictory. Therefore, this study aims to assess the association between couple’s preconception BMI and the risk of small for gestational age (SGA)/large for gestational age (LGA) infant, among over 4·7 million couples in a retrospective cohort study based on the National Free Pre-pregnancy Checkups Project (NFPCP) between December 1, 2013 and November 30, 2016 in China. Among the live births, 256,718 (5·44%) SGA events and 506,495 (10·73%) LGA events were documented, respectively. After adjusting for confounders, underweight men had significantly higher risk [OR 1·17 95%CI (1·15-1·19)] of SGA infants compared with men with normal BMI, while a significant and increased risk of LGA infants was obtained for overweight and obese men [OR 1·08 (95% CI: 1·06-1·09); OR 1·19 (95%CI 1·17-1·20)] respectively. The restricted cubic spline (RCS) result revealed a non-linearly decreasing dose-response relationship of paternal BMI (less than 22·64) with SGA. Meanwhile, a non-linearly increasing dose-response relationship of paternal BMI (more than 22·92) with LGA infants was observed. Moreover, similar results about the association between maternal preconception BMI and SGA/LGA infants were obtained. Abnormal preconception BMIs in either women or men were associated with increased risk of SGA/LGA infants, respectively. Overall, couple’s abnormal weight before pregnancy may be an important preventable risk factor for SGA/LGA infants.
GPR120 is implicated in the regulation of glucose and lipid metabolism, and insulin resistance. In the current study, we aimed to investigate the role of GPR120 in polycystic ovary syndrome (PCOS). With the adoption of dehydroepiandrosterone, a rat model was established to simulate PCOS in vitro. mRNA and protein expression levels of GPR120 were measured using RT-qPCR and western blot, respectively. In addition, expression levels of testosterone, estradiol, luteinizing hormone and follicle-stimulating hormone, serum total cholesterol and triglyceride were assessed using the corresponding kits. Moreover, haematoxylin and eosin staining was used to detect pathological changes in ovary or liver and oil red staining was utilized to evaluate lipid accumulation. In the present study, GPR120 was downregulated in plasma, liver and ovary in the PCOS rat model. In addition, the GPR120 agonist regulated lipid metabolism in the liver and weight in the PCOS rat model. Furthermore, the GPR120 agonist decreased insulin resistance in the PCOS rat model but improved the ovarian function. It is suggested that GPR120 plays a vital role in suppressing insulin resistance, regulating ovary function and decreasing lipid accumulation in the liver, demonstrating that targeting GPR120 could be an effective method for the improvement of PCOS.
Indoor ventilation is essential for a healthy and comfortable living environment. A key issue is to discharge anthropogenic air contamination such as CO$_2$ gas or, of potentially more direct consequence, airborne respiratory droplets. Here, by employing direct numerical simulations, we study mechanical displacement ventilation with a wide range of ventilation rates $Q$ from 0.01 to 0.1 m$^3$ s$^{-1}$ person$^{-1}$. For this ventilation scheme, a cool lower zone is established beneath a warm upper zone with interface height $h$, which depends on $Q$. For weak ventilation, we find the scaling relation $h\sim Q^{3/5}$, as suggested by Hunt & Linden (Build. Environ., vol. 34, 1999, pp. 707–720). Also, the CO$_{2}$ concentration decreases with $Q$ within this regime. However, for too strong ventilation, the interface height $h$ becomes insensitive to $Q$, and the ambient averaged CO$_2$ concentration decreases towards the ambient value. At these values of $Q$, the concentrations of pollutants are very low and so further dilution has little effect. We suggest that such scenarios arise when the vertical kinetic energy associated with the ventilation flow is significant compared with the potential energy of the thermal stratification.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
Anaemia is a global public health problem affecting women worldwide, and reproductive-age women are at increased risk. We conducted a population-based cross-sectional study analysing the prevalence of overall anaemia and anaemia according to severity in Chinese pre-pregnant women to update current knowledge on anaemia epidemiology. Based on the National Free Preconception Check-up Projects supported by the Chinese government, 5 679 782 women participating in this project in 2017 were included in the present study. The cyanmethemoglobin method was applied to assess Hb concentrations. Univariate and multivariate logistic regressions were applied for associated factors. The prevalence of anaemia among Chinese pre-pregnant women was 21·64 % (mild: 14·10 %, moderate: 7·17 % and severe : 0·37 %). The prevalence of overall and severe anaemia was the highest in Tibet and the lowest in Beijing among thirty-one provinces. Women’s age, region, ethnic origin, educational level, occupation and pregnancy history were all correlated with anaemia. Women with B blood type (adjusted OR (aOR) = 0·89), higher BMI (overweight: aOR = 0·84; obesity: aOR = 0·70) and alcohol consumption (aOR = 0·69) were less likely to have anaemia, while those with rhesus negative blood type (aOR = 1·10), history of anaemia (aOR = 2·60), older age at menarche (aOR = 1·19), heavy menstrual blood loss (aOR = 1·39), longer menstrual period (aOR = 1·09) and shorter menstrual cycle (aOR = 1·08) were more likely to suffer from anaemia. Meat or egg eaters were not significantly associated with severe anaemia. Anaemia is of moderate public health significance among Chinese pre-pregnant women. Interventions should be considered to prevent anaemia to the greatest extent possible to avoid potential harm in this population.
Upper Ordovician strata exposed from the Baiyanhuashan section is the most representative Late Ordovician unit in the northwestern margin of the North China Craton (NCC). In total, 1,215 conodont specimens were obtained from 24 samples through the Wulanhudong and Baiyanhuashan formations at the Baiyanhuashan section. Thirty-six species belonging to 17 genera, including Tasmanognathus coronatus new species, are present. Based on this material, three conodont biozones—the Belodina confluens Biozone, the Yaoxianognathus neimengguensis Biozone, and the Yaoxianognathus yaoxianensis Biozone—have been documented, suggesting that the Baiyanhuashan conodont fauna has a stratigraphic range spanning the early to middle Katian. The Baiyanhuashan conodont fauna includes species both endemic to North China and widespread in tropical zones, allowing a reassessment of the previous correlations of the Katian conodont zonal successions proposed for North China with those established for shallow-water carbonate platforms at low latitudes.
ABSTRACT IMPACT: Our study will integrate state-of-the-art methods in pathogen genomics, epidemiology, and geospatial analysis to identify both host- and pathogen-factors driving the MDR-TB transmission and the study outcome can inform the design of targeted interventions OBJECTIVES/GOALS: The emergence of multidrug-resistant tuberculosis (MDR-TB) poses serious challenges for the global eradication of tuberculosis. Recent research has shown that transmission is now the dominant driver of MDR-TB. However, our limited understanding of where and among whom MDR-TB is transmitted hampers efforts to control person-to-person spread. METHODS/STUDY POPULATION: We used several analytic approaches to characterize the dynamics of MDR-TB transmission in Shanghai, China. We identified all culture-confirmed MDR cases between 2009-2016 in the city and 1) estimated individual-level risk factors for MDR disease; 2) mapped the TB cases by their home addresses and used a Bayesian spatial disease mapping method to identify regions with an elevated risk of MDR-TB; and 3) we sequenced all MDR isolates to understand whether transmission explained variance in risk that was not attributable to the distribution of individual or location-specific risk variates. RESULTS/ANTICIPATED RESULTS: There were 1034 MDR-TB cases among 16,315 culture-confirmed TB cases during the study period. Bayesian disease mapping identified spatial heterogeneity of MDR-TB and determined four hotspots with an elevated risk of MDR-TB, none of which were fully explained by individual or regional-covariates (Figure 1). Sequencing revealed that more than 40% of the MDR-TB strains were in genomic clusters, indicating recent MDR-TB transmission. Most importantly, MDR-TB cases in three of the four large clades (>8 isolates) were spatially concentrated in three strain-specific hotspots (Figure 2). DISCUSSION/SIGNIFICANCE OF FINDINGS: With the combination of traditional epidemiological tools, geographical, and genomic methods, this study revealed multiple loci of transmission of specific MDR-TB clades within a single city. Identification of where and among whom MDR-TB is transmitted can inform the design of targeted interventions.
Pre-existing health conditions may exacerbate the severity of coronavirus disease 2019 (COVID-19). We aimed to estimate the case-fatality rate (CFR) and rate ratios (RR) for patients with hypertension (HBP) and diabetes mellitus (DM) in the New York state. We obtained the age-specific number of COVID-19 confirmed cases and deaths from public reports provided by the New York State Department of Health, and age-specific prevalence of HBP and DM from the Behavioral Risk Factor Surveillance System 2017. We calculated CFR and RR for COVID-19 patients with HBP and DM based on the reported number of deaths with the comorbidity divided by the expected number of COVID-19 cases with the comorbidity. We performed subgroup analysis by age and calculated the CFR and RR for ages of 18–44, 45–64 and 65+ years, respectively. We found that the older population had a higher CFR, but the elevated RRs associated with comorbidities are more pronounced among the younger population. Our findings suggest that besides the elderly, the young population with comorbidity should also be considered as a vulnerable group.
Suppressing nonlinear effects in high-power fiber lasers based on fiber gratings has become a hotspot. At present, research is mainly focused on suppressing stimulated Raman scattering in a high-power fiber laser. However, the suppression of spectral broadening, caused by self-phase modulation or four-wave mixing, is still a challenging attribute to the close distance between the broadened laser and signal laser. If using a traditional fiber grating with only one stopband to suppress the spectral broadening, the signal power will be stripped simultaneously. Confronting this challenge, we propose a novel method based on phase-shifted long-period fiber grating (PS-LPFG) to suppress spectral broadening in a high-power fiber master oscillator power amplifier (MOPA) laser system in this paper. A PS-LPFG is designed and fabricated on 10/130 passive fiber utilizing a point-by-point scanning technique. The resonant wavelength of the fabricated PS-LPFG is 1080 nm, the full width at half maximum of the passband is 5.48 nm, and stopband extinction exceeds 90%. To evaluate the performance of the PS-LPFG, the grating is inserted into the seed of a kilowatt-level continuous-wave MOPA system. Experiment results show that the 30 dB linewidth of the output spectrum is narrowed by approximately 37.97%, providing an effective and flexible way for optimizing the output linewidth of high-power fiber MOPA laser systems.
In view of many problems associated with the availability of global navigation satellite system (GNSS) signals in high-altitude space, this paper presents a comprehensive and systematic analysis. First, the coverage and strength characteristics of GNSS signals in high-altitude space (i.e., space above the GNSS constellation) are presented, and the visibility of GNSS signals is evaluated by combining these two factors. Second, the geometric configuration and geometric dilution of precision (GDOP) of visible GNSS satellites are analysed. Then, the Doppler shift range of the GNSS signals is deduced based on the dynamic performance of high-altitude spacecraft. Finally, taking GaoFen-4 (GF-4) as the application object, the availability of GNSS signals is simulated and evaluated. GNSS signals in high-altitude space are generally weak, and the visible GNSS satellites are concentrated in the high-elevation range. The combination of main and side lobe signals and compatibility of multiple constellations can increase the number of visible satellites, improve the geometry configuration, reduce GDOP, and thus improve the availability of GNSS signals. The results of this research can provide technical support for the design and development of GNSS receivers suitable for high-altitude space.
Detecting the turbulent/non-turbulent interface is a challenging topic in turbulence research. In the present study, machine learning methods are used to train detectors for identifying turbulent regions in the flow past a circular cylinder. To ensure that the turbulent/non-turbulent interface is independent of the reference frame of coordinates and is physics-informed, we propose to use invariants of tensors appearing in the transport equations of velocity fluctuations, strain-rate tensor and vortical tensor as the input features to identify the flow state. The training samples are chosen from numerical simulation data at two Reynolds numbers, $Re=100$ and 3900. Extreme gradient boosting (XGBoost) is utilized to train the detector, and after training, the detector is applied to identify the flow state at each point of the flow field. The trained detector is found robust in various tests, including the applications to the entire fields at successive snapshots and at a higher Reynolds number $Re=5000$. The objectivity of the detector is verified by changing the input features and the flow region for choosing the turbulent training samples. Compared with the conventional methods, the proposed method based on machine learning shows its novelty in two aspects. First, no threshold value needs to be specified explicitly by the users. Second, machine learning can treat multiple input variables, which reflect different properties of turbulent flows, including the unsteadiness, vortex stretching and three-dimensionality. Owing to these advantages, XGBoost generates a detector that is more robust than those obtained from conventional methods.
The docking simulators are significant ground test equipment for aerospace projects. The fidelity of docking simulation highly depends on the accuracy performance. This paper investigates the kinematic accuracy for the developed docking simulator. A novel kinematic calibration method which can reduce the number of parameters for error modeling is presented. The principle of parameters separation is studied. A simplified error model is derived based on Taylor series. This method can contribute to the simplification of the error model, fewer measurements, and easier convergence during the parameters identification. The calibration experiment validates this method for further accuracy enhancement.
Potassium and cerium co-doped Bi4Ti2.86W0.14O12 ceramics with a formula of (K0.5Ce0.5)xBi4−xTi2.86W0.14O12 (abbreviated as KC100x-BITW, x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared by a conventional solid-state reaction method. The effect of (K0.5Ce0.5) complex doping amount on the structure, dielectric, and piezoelectric properties of the KC100x-BITW ceramics was investigated. X-ray diffraction results indicated that the KC100x-BITW ceramics are Aurivillius-type phase with the bismuth layer structure. (K0.5Ce0.5) complex addition first increases and then decreases the grain size which can be observed by scanning electron microscopy. With the increase of (K0.5Ce0.5) complex doping amount, the Curie temperature (TC) was slightly decreased from 632 to 608 oC. The dielectric and piezoelectric properties were optimized in KC100x-BITW ceramics with x = 0.08 as follows: d33 = 24 pC/N, kp = 8.2%, Qm = 6766, εr = 135 (@100 kHz), tanδ = 0.28% (@100 kHz), Tc = 611 oC, and resistivity ρ = 2.9 × 106 Ω cm at 500 oC, indicating that the KC100x-BITW ceramics are suitable for high-temperature piezoelectric sensing applications.
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial–mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
In this paper, the microstructure and the shear property of Cu/In–45Cu/Ni solder joints by transient liquid phase were studied, and the intermetallic compounds (IMCs) growth mechanism was investigated. The results showed that the IMCs volume ratio of solder joints was increased firstly and then decreased with increasing bonding time, and the IMCs volume ratio reached its maximum value of 95.8% at 60 min. The Cu interfacial IMC of the solder joint with dense microstructure was Cu2In phase at 60 min, and the Ni interfacial IMC was Ni3In7. The maximum shear strength of solder joints was obtained at 60 min, which is 15.21 MPa. The shear fracture appeared honeycomb structure, and the fracture occurred at the phase interface of Ni3In7/Cu11In9. The thickness of the interfacial IMCs and the white IMCs around the Cu particles (Cu@IMC) was increased continuously with increasing bonding time, and thus, the interconnection of Cu–Ni substrates was realized ultimately.