We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Time preference reversal refers to systematic inconsistencies between preferences and bids for intertemporal options. From the two eye-tracking studies (N1 = 60, N2 = 110), we examined the underlying mechanisms of time preference reversal. We replicated the reversal effect in which individuals facing a pair of intertemporal options choose the smaller-sooner option but assign a higher value to the larger-later one. Results revealed that the mean fixation duration and the proportion of gaze time on the outcome attribute varied across the choice and bid tasks. In addition, time preference reversals correlated with individual differences in maximizing tendencies. Findings support the contingent weighting hypothesis and strategy compatibility hypothesis and allow for improved theoretical understanding of the potential mechanisms and processes involved in time preference reversals.
Traditional Chinese Medicine (TCM) has become a common kind of health care in several countries, with increasing demands. This review aimed to appraise the reporting quality of economic evaluations of TCM in the National Reimbursement Drug List (NRDL) of China (2020 version), based on the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.
Methods
The reporting quality of included economic evaluations was assessed by two independent reviewers using the CHEERS statement.
Results
A total of 360 articles were retrieved, but only 38 economic evaluations met the inclusion criteria. No articles were compliant with all items of the CHEERS checklist. On average, the included economic evaluations satisfactorily met 10.93 of the CHEERS items (51.31%). The least reported CHEERS checklist items included: “Characterizing heterogeneity”, “Conflicts of interest”, “Discount rate”, and “Study perspective”, with an average score of 0.00, 0.05, 0.08, and 0.16, respectively.
Conclusions
The economic evaluation of TCM is still at an early stage, with an urgent need for improving the reporting quality. To promote the reporting quality of economic evaluations and further development of TCM, multiple measures focusing on reporting formula, policy, training, and new methodology are required.
With the disease spectrum changing in China, type 2 diabetes mellitus (T2DM) has become the main chronic disease which affects people’s health severely, bring patients serious economic burden of disease. For T2DM patients, reliable quality of evidence in decision-making are significant, improving the efficiency of the adjustment of the National Reimbursement Drug List (NRDL). Based on the Consolidated Health Economic Evaluation Reporting Standards (CHEERS), we aimed to evaluate the quality of all published pharmacoeconomic evaluations on T2DM drugs in 2020 NRDL.
Methods
Because the 2020 NRDL came into effect on 1 March 2021, we searched all published pharmacoeconomic evaluations about T2DM drugs in 2020 NRDL before March 2021 in China National Knowledge Infrastructure (CNKI), Wan fang Data, China Science and Technology Journal Database (VIP), PubMed, and Web of Science. According to the criterion of inclusion and exclusion, all documents were screened and then relevant basic information of targeted documents was extracted. The quality was evaluated by calculating the final scores based on CHEERS. Two reviewers assessed each publication’s quality using the CHEERS instrument and summarized study quality.
Results
A total of 910 papers were searched, and 24 papers were included. These involved six T2DM drugs, specifically IDegAsp, exenatide, liraglutide, lixisenatide, dapagliflozin and empagliflozin. The average score was 18.31, the standard deviation was 3.67, and the average scoring rate was 77.41 percent. Among all items, “characterizing heterogeneity” scored 0.04, least satisfied with requirements. “Setting and location”, “choice of health outcomes” and “assumptions” scored one, most satisfied with requirements. Among the average scores of all parts, “results” scored lowest at 0.55, and “methods” scored highest at 0.85. The Wilcoxon sum-rank tests showed that score rate which represented reporting quality of economic evaluation (EE) was significantly related to “journal type”, “EEs type”, “model choice” and “study perspective”.
Conclusions
The methodological quality of pharmacoeconomic evaluations about T2DM drugs in 2020 NRDL needs to be improved. Improving the quality of literature is the basic guarantee of scientific decision-making in national medical insurance negotiation.
An increasing number of studies have evaluated the association between ultra-processed foods (UPF) consumption and metabolic disorders. However, the association between UPF intake and non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, we analysed data from 6545 participants who were recruited in National Health and Nutrition Examination Surveys 2011–2018. UPF were defined in light of the NOVA food classification system and divided into quartiles based on its proportion of total weight intake. Complex logistic regression models were used to assess the association between UPF and NAFLD. Mediation analyses were conducted to reveal underlying mediators. We found that NAFLD patients consumed more UPF than controls (925·92 ± 18·08 v. 812·70 ± 14·32 g/d, P < 0·001). Dietary intake of UPF (% weight) was negatively related to the Healthy Eating Index-2015 score (Spearman r = −0·32, P < 0·001). In the multivariable model, the highest quartile compared with the lowest, the OR (95 % CI) were 1·83 (1·33, 2·53) for NAFLD (OR per 10 % increment: 1·15; 95 % CI: 1·09, 1·22; P for trend < 0·001) and 1·52 (1·12, 2·07) for insulin resistance (OR per 10 % increment: 1·11; 95 % CI: 1·05, 1·18; P for trend = 0·002). Mediation analyses revealed that poor diet quality, high saturated fat and refined grain intake partly mediated the association between UPF and NAFLD. In conclusion, high UPF intake was associated with an increased risk of NAFLD in US adults. Further prospective studies are needed to verify these findings.
Meristems in land plants share conserved functions but develop highly variable structures. Meristems in seed-free plants, including ferns, usually contain one or a few pyramid-/wedge-shaped apical cells (ACs) as initials, which are lacking in seed plants. It remained unclear how ACs promote cell proliferation in fern gametophytes and whether any persistent AC exists to sustain fern gametophyte development continuously. Here, we uncovered previously undefined ACs maintained even at late developmental stages in fern gametophytes. Through quantitative live-imaging, we determined division patterns and growth dynamics that maintain the persistent AC in Sphenomeris chinensis, a representative fern. The AC and its immediate progenies form a conserved cell packet, driving cell proliferation and prothallus expansion. At the apical centre of gametophytes, the AC and its adjacent progenies display small dimensions resulting from active cell division instead of reduced cell expansion. These findings provide insight into diversified meristem development in land plants.
Direct numerical simulations of turbulent pipe flow subjected to streamwise-varying wall rotation are performed. This control method is able to achieve drag reduction and even relaminarize the flow under certain control parameters at friction Reynolds number $Re_\tau =180$. Two control parameters, which are velocity amplitude and wavelength, are considered. It is found that increasing the wavelength rather than increasing the amplitude seems to be a better choice to improve the control efficiency. An annular boundary layer, called the spatial Stokes layer (SSL), is formed by the wall rotation. Based on the thickness of the SSL, two types of drag-reduction scenarios can be identified roughly. When the thickness is low, the SSL acts as a spacer layer, inhibiting the formation of streamwise vortices and thereby reducing the shear stress. The flow structures outside the SSL are stretched in the streamwise direction due to the increased velocity gradient. Within the SSL, the turbulence intensity diminishes dramatically. When the thickness is large, a streamwise wavy pattern of near-wall streaks is formed. The streak orientation is dominated by the mean shear-strain vector outside the viscous sublayer, and there is a phase difference between the streak orientation and local mean velocity vector. The streamwise scales of near-wall flow structures are reduced significantly, resulting in the disruption of downstream development of flow structures and hence leading to the drag reduction. Furthermore, it is found that it requires both large enough thickness of the SSL and velocity amplitude to relaminarize the turbulence. The relaminarization mechanism is that the annular SSL can absorb energy continuously from wall-normal stress due to the rotational effect, thereby the turbulence self-sustaining process cannot be maintained. For the relaminarization cases, the laminar state is stable to even extremely large perturbations, which possibly makes the laminar state the only fixed point for the whole system.
An experimental investigation of the stereocamera's systematic error is carried out to optimize three-dimensional (3-D) dust observation on the HL-2A tokamak. It is found that a larger 3-D region occupied by all calibration points is able to reduce the 3-D reconstruction systematic error of the stereocamera. In addition, the 3-D reconstruction is the most accurate around the region where the calibration points are located. Based on these experimental results, the design of the stereocamera on the HL-2A tokamak is presented, and a set of practical procedures to optimize the 3-D reconstruction accuracy of the stereocamera are proposed.
Caregiver-mediated intervention (CMI), based on parent skills training, is a family-mediated intervention model for children with neurodevelopmental disorders, in particular autism spectrum disorder. This study aimed to evaluate the effectiveness of CMI.
Methods:
Thirty-three children (aged 22–69 months from our department) and their caregivers participated in a two-week training course of ten 90-minute lessons. Caregivers were encouraged to try their best to apply intervention skills in both home routines and play routines to encourage the development of cognition, motion, social adaptability, and behavior of children. Demographic information, video-recorded data, and diagnostic scales were collected at two key time points: baseline and post-training (PT – within six months).
Results:
Three aspects were assessed – primary variables, secondary variables, and correlation analyses. Results showed an improvement in PT in (1) Adult/Child Interaction Fidelity Rating (P < 0.01) and (2) adaptability of Gesell Developmental Scale and stereotyped behaviors and limited interests of Autism Diagnostic Observation Schedule (P < 0.05, P < 0.01). Moreover, a negative correlation occurred between caregiver skill improvement and parent education (P < 0.05), but without correlations with other demographics.
Conclusions:
As an efficacious family intervention for both children and their caregivers, CMI is worth being generalized widely.
A pulsed fast neutron source is critical for applications of fast neutron resonance radiography and fast neutron absorption spectroscopy. However, due to the large transversal source size (of the order of mm) and long pulse duration (of the order of ns) of traditional pulsed fast neutron sources, it is difficult to realize high-contrast neutron imaging with high spatial resolution and a fine absorption spectrum. Here, we experimentally present a micro-size ultra-short pulsed neutron source by a table-top laser–plasma wakefield electron accelerator driving a photofission reaction in a thin metal converter. A fast neutron source with source size of approximately 500 μm and duration of approximately 36 ps has been driven by a tens of MeV, collimated, micro-size electron beam via a hundred TW laser facility. This micro-size ultra-short pulsed neutron source has the potential to improve the energy resolution of a fast neutron absorption spectrum dozens of times to, for example, approximately 100 eV at 1.65 MeV, which could be of benefit for high-quality fast neutron imaging and deep understanding of the theoretical model of neutron physics.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
Treatment non-response and recurrence are the main sources of disease burden in major depressive disorder (MDD). However, little is known about its neurobiological mechanism concerning the brain network changes accompanying pharmacotherapy. The present study investigated the changes in the intrinsic brain networks during 6-month antidepressant treatment phase associated with the treatment response and recurrence in MDD.
Methods
Resting-state functional magnetic resonance imaging was acquired from untreated patients with MDD and healthy controls at baseline. The patients' depressive symptoms were monitored by using the Hamilton Rating Scale for Depression (HAMD). After 6 months of antidepressant treatment, patients were re-scanned and followed up every 6 months over 2 years. Traditional statistical analysis as well as machine learning approaches were conducted to investigate the longitudinal changes in macro-scale resting-state functional network connectivity (rsFNC) strength and micro-scale resting-state functional connectivity (rsFC) associated with long-term treatment outcome in MDD.
Results
Repeated measures of the general linear model demonstrated a significant difference in the default mode network (DMN) rsFNC change before and after the 6-month antidepressant treatment between remitters and non-remitters. The difference in the rsFNC change over the 6-month antidepressant treatment between recurring and stable MDD was also specific to DMN. Machine learning analysis results revealed that only the DMN rsFC change successfully distinguished non-remitters from the remitters at 6 months and recurring from stable MDD during the 2-year follow-up.
Conclusion
Our findings demonstrated that the intrinsic DMN connectivity could be a unique and important target for treatment and recurrence prevention in MDD.
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid vs. solid), and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15,538 participants, free of NAFLD, other liver diseases, cardiovascular disease, cancer, or diabetes at baseline (2013-2018 years). Added sugar intake was estimated from a validated 100-item food frequency questionnaire. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazards ratios (HRs) and corresponding 95% confidence intervals (CIs) for NAFLD risk with added sugar intake. During a median follow-up of 4.2 years, 3,476 incident NAFLD cases were documented. After adjusting for age, sex, body mass index and its change from baseline to follow-up, lifestyle factors, personal and family medical history, and overall diet quality, the multivariable HRs (95% CIs) of NAFLD risk were 1.18 (1.06, 1.32) for total added sugars, 1.20 (1.08, 1.33) for liquid added sugars, and 0.96 (0.86, 1.07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.
Oblique breakdown in a Mach 2.0 supersonic boundary layer controlled by a local cooling strip with a temperature jump is investigated using direct numerical simulations and linear stability theory. The effect of temperature on the stability of the fundamental oblique waves is first studied by linear stability theory. It is shown that the growth rate of fundamental oblique waves will decrease monotonically as the temperature decreases. However, the results of the direct numerical simulations indicate that transition reversal will occur as the growth rate of the fundamental oblique waves of cooled case becomes faster compared with that of baseline case downstream of the cooling strip. When the cooling strip is in the linear region, the transition is delayed due to the suppression effect of the cooling strip on the fundamental oblique waves. When the cooling strip is located in the early nonlinear region, the fundamental oblique waves will be suppressed by higher spanwise wavenumber steady modes generated by the mutual and self-interaction between the fundamental oblique waves and harmonic modes, which is first called the self-suppression effect (SSE) in the present study. Further research indicated that the meanflow distortion generated by steady modes plays an important role in the SSE. Compared with the stabilization effect of the cooling strip, the SSE is more effective. Moreover, the SSE might provide a new idea on the instability control, as it is observed that the SSE works three times leading to the growth rate of fundamental oblique waves slowing down at three different regions, respectively.
This work studies the detachment of a micron-sized spherical particle from a surface with concave roughness in a linear shear flow. The concave roughness is described as regularly spaced hollow hemispheres below a flat surface and is characterised by two dimensionless parameters, i.e. dimensionless asperity distance and asperity size ratio. The hydrodynamic force and torque on the particle are calculated by performing lattice Boltzmann simulations for particle Reynolds numbers ranging from 0.02 to 40. Empirical correlations of the drag, lift and torque coefficients of the particle as functions of the particle Reynolds number and the asperity size ratio are proposed. For detachment by lifting, sliding and rolling, a numerical approach to calculate the critical particle Reynolds number (i.e. above which the particle can detach from the surface) is proposed. It is found that the dimensionless asperity distance and the distribution of asperities on the rough surface have a minor influence on the hydrodynamic force and torque on the particle, and the detachment of the particle becomes more difficult as the particle sits deeper in a larger hole. Both the empirical correlations and the numerical approach can be implemented into Lagrangian particle tracking and can accurately predict the detachment of particles from the surface with concave roughness or the detachment of particles embedded in a flat surface.
Family functioning is associated with anxiety and depression. Perinatal depression and anxiety are common and influence the well-being of women, partners and their offspring. However, little is known about differences in associations between family functioning and mood symptoms in women and their partners in early pregnancy.
Aims
Investigating differences in associations between family functioning and anxious and depressive symptoms in women and their partners in early pregnancy.
Method
In total, 171 woman–partner pairs were enrolled. The Edinburgh Postnatal Depression Scale (EPDS), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder 7-Item scale (GAD-7) and Family Assessment Device (FAD) were performed. Correlation analysis and multiple linear regression analysis were applied to investigate the associations.
Results
In pregnant women, all the subscale scores on the FAD were correlated with total scores on the EPDS and GAD-7 (all P < 0.05), whereas only the Roles subscale showed a predicting effect in regression models (P < 0.01). In partners, all the subscale scores on the FAD were related to total scores on the PHQ-9 (all P < 0.05), whereas only the Problem Solving subscale showed a predicting effect (P = 0.029).
Conclusions
Our findings indicate that family functioning in the domain of roles is associated with anxious and depressive symptoms in pregnant women and functioning in the domain of problem solving is associated with depressive symptoms in partners. Clinicians should pay special attention to roles and problem solving when assessing mood symptoms in pregnant women and their partners. This study also provides a basis for family health education in early pregnancy.
Archaeologists have discovered numerous human skeletons densely deposited on the floors of the houses of the Hamin Mangha Neolithic site (3600–3100 cal. bc) in Tongliao City, northeast China. Some researchers have hypothesized that a plague led to the decline of the Hamin Mangha population. Without dismissing the power of environmental and epidemiological factors, here I will propose additional potential forces that may have led to social change. In this regard, I will employ entanglement theory along with concepts of relational ontology, habitus and social memory to provide an expanded explanatory framework for interpreting social decline in the Hamin Mangha site. I will construct and employ a modified entanglement model to analyse the changes that occurred. I will argue that the complexity, instability and contradictions created by what is referred to as ‘human–thing entanglements’ contributed to the decline of Hamin Mangha society. I will conclude that the concept of entanglement helps us to direct attention to major factors that underlie the process of social decline in the research site.
The performance of hypersonic vehicles in the take-off stage considerably influences their capability of accomplishing the flight tasks. This study is aimed at enhancing the take-off performance of a cruise aircraft using the improved chimp optimisation algorithm. The proposed algorithm, which uses the Sobol sequence for initial population generation and a function of the weight factors, can effectively overcome the problems of premature convergence and low accuracy of the original algorithm. In particular, the Sobol sequence aims to obtain a better fitness value in the first iteration, and the weight factor aims to accelerate the convergence speed and avoid the local optimal solution. The take-off mass model of the hypersonic vehicle is constructed considering the flight data obtained using the pseudo-spectral method in the climb phase. Simulations are performed to evaluate the algorithm performance, and the results show that the algorithm can rapidly and stably optimise the benchmark function. Compared to the original algorithm, the proposed algorithm requires 28.89% less optimisation time and yields an optimised take-off mass that is 1.72kg smaller.
Depression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).
Methods
The GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.
Results
Two genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).
Conclusions
Our findings provide novel clues for understanding of the complex genetic architecture of depression.