We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most long QT syndrome patients are associated with genetic mutations. We aimed to investigate the clinical and biochemical characteristics and look for genotype-based preventive implications in Chinese long QT syndrome patients.
Methods and results
We identified two missense mutations of the KCNQ1 gene in two independent Chinese families, including a previously reported mutation R380S in the C-terminus and a novel mutation W305L in the P-loop domain of the Kv7.1 channel, respectively. The proband with R380S was an 11-year-old girl who suffered a prolonged corrected QT interval of 660 ms, recurrent syncope, and sudden cardiac death, whose father was an asymptomatic carrier. The mutation W305L was detected in a 36-year-old woman with long QT syndrome and her immediate family members including the proband’s younger sister with an unexplained syncope, her son, and her elder daughter without symptoms. Metoprolol appeared to be effective in preventing arrhythmias and syncope in long QT syndrome patients with mutation W305L. Both R380S and W305L mutations led to “loss-of-function” of the Kv7.1 channel accounting for the clinical phenotypes.
Conclusions
We first show two missense KCNQ1 mutations – R380S and W305L – in Chinese long QT syndrome patients, resulting in the loss of protein function. Mutation W305L in the P-loop domain of the Kv7.1 may derive a pronounced benefit from β-blocker therapy in symptomatic long QT syndrome patients, whereas mutation R380S located in the C-terminus may be associated with a high risk of sudden cardiac death.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.