We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To estimate prior severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among skilled nursing facility (SNF) staff in the state of Georgia and to identify risk factors for seropositivity as of fall 2020.
Design:
Baseline survey and seroprevalence of the ongoing longitudinal Coronavirus 2019 (COVID-19) Prevention in Nursing Homes study.
Setting:
The study included 14 SNFs in the state of Georgia.
Participants:
In total, 792 SNF staff employed or contracted with participating SNFs were included in this study. The analysis included 749 participants with SARS-CoV-2 serostatus results who provided age, sex, and complete survey information.
Methods:
We estimated unadjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for potential risk factors and SARS-CoV-2 serostatus. We estimated adjusted ORs using a logistic regression model including age, sex, community case rate, SNF resident infection rate, working at other facilities, and job role.
Results:
Staff working in high-infection SNFs were twice as likely (unadjusted OR, 2.08; 95% CI, 1.45–3.00) to be seropositive as those in low-infection SNFs. Certified nursing assistants and nurses were 3 times more likely to be seropositive than administrative, pharmacy, or nonresident care staff: unadjusted OR, 2.93 (95% CI, 1.58–5.78) and unadjusted OR, 3.08 (95% CI, 1.66–6.07). Logistic regression yielded similar adjusted ORs.
Conclusions:
Working at high-infection SNFs was a risk factor for SARS-CoV-2 seropositivity. Even after accounting for resident infections, certified nursing assistants and nurses had a 3-fold higher risk of SARS-CoV-2 seropositivity than nonclinical staff. This knowledge can guide prioritized implementation of safer ways for caregivers to provide necessary care to SNF residents.
To identify risk factors associated with methicillin-resistant Staphylococcus aureus (MRSA) acquisition in long-term care facility (LTCF) residents.
Design.
Multicenter, prospective cohort followed over 6 months.
Setting.
Three Veterans Affairs (VA) LTCFs.
Participants.
All current and new residents except those with short stay (<2 weeks).
Methods.
MRSA carriage was assessed by serial nares cultures and classified into 3 groups: persistent (all cultures positive), intermittent (at least 1 but not all cultures positive), and noncarrier (no cultures positive). MRSA acquisition was defined by an initial negative culture followed by more than 2 positive cultures with no subsequent negative cultures. Epidemiologic data were collected to identify risk factors, and MRSA isolates were typed by pulsed-field gel electrophoresis (PFGE).
Results.
Among 412 residents at 3 LTCFs, overall MRSA prevalence was 58%, with similar distributions of carriage at all 3 facilities: 20% persistent, 39% intermittent, 41% noncarriers. Of 254 residents with an initial negative swab, 25 (10%) acquired MRSA over the 6 months; rates were similar at all 3 LTCFs, with no clusters evident. Multivariable analysis demonstrated that receipt of systemic antimicrobials during the study was the only significant risk factor for MRSA acquisition (odds ratio, 7.8 [95% confidence interval, 2.1–28.6]; P = .002). MRSA strains from acquisitions were related by PFGE to those from a roommate in 9/25 (36%) cases; 6 of these 9 roommate sources were persistent carriers.
Conclusions.
MRSA colonization prevalence was high at 3 separate VA LTCFs. MRSA acquisition was strongly associated with antimicrobial exposure. Roommate sources were often persistent carriers, but transmission from roommates accounted for only approximately one-third of MRSA acquisitions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.