We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a short overview on the strongest variational formulation for gradient flows of geodesically λ-convex functionals in metric spaces, with applications to diffusion equations in Wasserstein spaces of probability measures. These notes are based on a series of lectures given by the second author for the Summer School “Optimal Transportation: Theory and Applications” in Grenoble during the week of June 22–26, 2009.
Introduction
These notes are based on a series of lectures given by the second author for the Summer School “Optimal Transportation: Theory and Applications” in Grenoble during the week of June 22–26, 2009.
We try to summarize some of the main results concerning gradient flows of geodesically λ-convex functionals in metric spaces and applications to diffusion partial differential equations (PDEs) in the Wasserstein space of probability measures. Due to obvious space constraints, the theory and the references presented here are largely incomplete and should be intended as an oversimplified presentation of a quickly evolving subject. We refer to the books [3, 68] for a detailed account of the large literature available on these topics.
In the Section 6.2 we collect some elementary and well-known results concerning gradient flows of smooth convex functions in ℝd. We selected just a few topics, which are well suited for a “metric” formulation and provide a useful guide for the more abstract developments. In the Section 6.3 we present the main (and strongest) notion of gradient flow in metric spaces characterized by the solution of a metric evolution variational inequality: the aim here is to show the consequence of this definition, without any assumptions on the space and on the functional (except completeness and lower semicontinuity); we shall see that solutions to evolution variational inequalities enjoy nice stability, asymptotic, and regularization properties.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.