We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of Tom Dishion's most significant contributions to prevention science was the development of affordable, ecologically valid interventions, such as the Family Check-Up, that screen for child and family risk factors broadly, but concentrate family-specific interventions on those with greatest potential for population impact. In the spirit of this approach, investigators examined effects of a brief, universal postnatal home visiting program on child emergency medical care and billing costs from birth to age 24 months. Family Connects is a community-wide public health intervention that combines identification and alignment of community services and resources with brief, postpartum nurse home visits designed to assess risk, provide supportive guidance, and connect families with identified risk to community resources. Over 18 months, families of all 4,777 resident Durham County, North Carolina, births were randomly assigned based on even or odd birth date to receive a postnatal nurse home visiting intervention or services as usual (control). Independently, 549 of these families were randomly selected and participated in an impact evaluation study. Families, blind to study goals, provided written consent to access hospital administrative records. Results indicate that children randomly assigned to Family Connects had significantly less total emergency medical care (by 37%) through age 24 months, with results observed across almost all subgroups. Examination of billing records indicate a $3.17 decrease in total billing costs for each $1 in program costs. Overall, results suggest that community-wide postpartum support program can significantly reduce population rates of child emergency medical care through age 24 months while being cost-beneficial to communities.
Employing atomic-scale simulations, the response of a high-angle grain boundary (GB), the soft/hard GB, against external loading was systematically investigated. Under tensile loading close to the hard orientation, strain-induced dynamic recrystallization was observed to initiate through direct soft-to-hard grain reorientation, which was triggered by stress mismatch, inhibited by surface tension from the soft-hard GB, and proceeded by interface ledges. Such grain reorientation corresponds with expansion and contraction of the hard grain along and perpendicular to the loading direction, respectively, accompanied by local atomic shuffling, providing relatively large normal strain of 8.3% with activation energy of 0.04 eV per atom. Tensile strain and residual dislocations on the hard/soft GB facilitate the initiation of dynamic recrystallization by lowering the energy barrier and the critical stress for grain reorientation, respectively.
It is no longer possible nor desirable to address the dual challenges of equity and sustainability separately. Instead, they require new thinking and approaches which recognize their interlinkages, as well as the multiple perspectives and dimensions involved. We illustrate how equity and sustainability are intertwined, and how a complex social–ecological systems lens brings together advances from across the social and natural sciences to show how (in)equity and (un)sustainability are produced by the interactions and dynamics of coupled social–ecological systems. This should help understand which possible pathways could lead to sustainable and fair futures.
Small Island Developing States (SIDS) are island nations that experience specific social, economic and environmental vulnerabilities associated with small populations, isolation and limited resources. Globally, SIDS exhibit exceptionally high rates of non-communicable disease (NCD) risk and incidence. Despite this, there is a lack of context-specific research within SIDS focused on life course approaches to NCD prevention, particularly the impact of the early-life environment on later disease risk as defined by the Developmental Origins of Health and Disease (DOHaD) framework. Given that globalization has contributed to significant nutritional transitions in these populations, the DOHaD paradigm is highly relevant. SIDS in the Pacific region have the highest rates of NCD risk and incidence globally. Transitions from traditional foods grown locally to reliance on importation of Western-style processed foods high in fat and sugar are common. The Cook Islands is one Pacific SIDS that reports this transition, alongside rising overweight/obesity rates, currently 91%/72%, in the adult population. However, research on early-life NCD prevention within this context, as in many low- and middle-income countries, is scarce. Although traditional research emphasizes the need for large sample sizes, this is rarely possible in the smaller SIDS. In these vulnerable, high priority countries, consideration should be given to utilizing ‘small’ sample sizes that encompass a high proportion of the total population. This may enable contextually relevant research, crucial to inform NCD prevention strategies that can contribute to improving health and well-being for these at-risk communities.
The three-dimensional microstructures of two conventional 316L stainless steels and a grain boundary (GB)-engineered version of the same steel have been characterized by using serial sectioning and electron backscatter diffraction mapping. The morphologies, area fractions, and number fractions of twin boundaries (TBs) were measured and compared, and the random boundary connectivity was evaluated. Although two-dimensional observations suggest that TBs are planar, occluded twin-grains and tunnel-shaped TBs were also observed. In addition, some large and morphologically complex TBs were observed in the GB-engineered sample, and these TBs were responsible for the increase in the twin area fraction that has been reported in past studies. While GB engineering increased the boundary area fraction, the TB number fraction was almost unchanged. Because the GB engineering process changed only the area fraction and not the number fraction, the connectivity of random boundaries was not disrupted.
Many shorebird populations are in decline along the East Asian-Australasian Flyway. The rapid loss of coastal wetlands in the Yellow Sea, which provide critical stop-over sites during migration, is believed to be the cause of the alarming trends. The Yalu Jiang coastal wetland, a protected area in the north Yellow Sea, supports the largest known migratory staging populations of Bar-tailed Godwits Limosa lapponica (menzbieri and baueri subspecies) and Great Knots Calidris tenuirostris. Monitoring of the macrozoobenthos food for these shorebirds from 2011 to 2016 showed declines of over 99% in the densities of the bivalve Potamocorbula laevis, the major food here for both Bar-tailed Godwits and Great Knots. The loss of the bivalve might be caused by any combination of, but not limited to: (1) change in hydrological conditions and sediment composition due to nearby port construction, (2) run-off of agrochemicals from the extensive shoreline sea cucumber farms, and (3) parasitic infection. Surprisingly, the numbers of birds using the Yalu Jiang coastal wetland remained stable during the study period, except for the subspecies of Bar-tailed Godwit L. l. menzbieri, which exhibited a 91% decline in peak numbers. The lack of an overall decline in the number of bird days in Great Knots and in the peak numbers of L. l. baueri, also given the published simultaneous decreases in their annual survival, implies a lack of alternative habitats that birds could relocate to. This study highlights that food declines at staging sites could be an overlooked but important factor causing population declines of shorebirds along the Flyway. Maintaining the quality of protected staging sites is as important in shorebird conservation as is the safeguarding of staging sites from land claim. Meanwhile, it calls for immediate action to restore the food base for these beleaguered migrant shorebirds at Yalu Jiang coastal wetland.
The effect of tunnel cations on tunnel size in α-MnO2 structured (hollandite, cryptomelane) materials has long been of interest, as the tunnel size effects catalytic and transport properties. Previous research on the tunnel size has focused on potassium cryptomelane (KxMn8O16). This paper uses synthetic control of silver content in AgxMn8O16 to investigate the effect that tunnel silver occupancy has on the lattice parameters. Materials with silver (x) content between 1.14 and 1.66 were synthesized, synchrotron diffraction and Rietveld Refinement was used to determine lattice parameters. The lattice parameters were found to contract as silver content increases (from 9.774 Å to 9.738 Å), in contrast to previous investigations of other tunnel cations.
In Belgium, sport horse breeding is organized by the Belgian Warmblood Horse (BWP) studbook and the Belgian Sport Horse (sBs) studbook. Genetic links between both populations have been suspected because BWP and sBs studbooks had concomitant development after the Second World War, because they are geographically close, and because they have the same selection objectives (model, jumping and dressage ability). The conservation of genetic variability between breeds is important, even in selected populations, in order to allow a long term management of the entire genetic resources available for future improvements. The purpose of this study was to evaluate the genetic links between BWP and sBs populations by the study of their comparative genetic variability. Some studies already dealt with a similar problem (Moureaux et al., 1996; Valera et al., 2005).
A new instrument for high-resolution optical logging has been built and tested in Antarctica. Its purpose is to obtain records of volcanic products and other scattering features, such as bubbles and impurities, preserved in polar ice sheets, and it achieves this by using long wavelength near-infrared light that is absorbed by the ice before many scattering events occur. Longer wavelengths ensure that the return signal is composed primarily of a single or few backscattering event(s) that limit its spatial spread. The compact optical logger features no components on its body that draw power, which minimizes its size and weight. A prototype of the logger was built and tested at Siple Dome A borehole, and the results were correlated with prior optical logging profiles and records of volcanic products from collected ice core samples.
Currently large sky area spectral surveys like SDSS, 2dF, and LAMOST, using the new generation of telescopes and observatories, have provided massive spectral data sets for astronomical research. Most of the data can be automatically handled with pipelines, but visually inspection by human eyes is still necessary in several situations, like low SNR spectra, QSO recognition and peculiar spectra mining. Using ASERA, A Spectrum Eye Recognition Assistant, we can set up a team spectral inspection platform. On a preselected spectral data set, members of a team can individually view spectra one by one, find the best match template and estimate the redshift. Results from different members will be gathered and merged to raise the team work efficiency. ASERA mainly targets the spectra of SDSS and LAMOST fits data formats. Other formats can be supported with some conversion. Spectral templates from SDSS and LAMOST pipelines are embedded and users can easily add their own templates. Convenient cross identification interfaces with SDSS, SIMBAD, VIZIER, NED and DSS are also provided. An application example targeting finding strong emission line spectra from LAMOST DR2 is presented.
This paper briefly describes the principle of operation and science goals of the AMANDA high energy neutrino telescope located at the South Pole, Antarctica. Results from an earlier phase of the telescope, called AMANDA-BIO, demonstrate both reliable operation and the broad astrophysical reach of this device, which includes searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, Gamma-Ray Bursts and diffuse sources. The predicted sensitivity and angular resolution of the telescope were confirmed by studies of atmospheric muon and neutrino backgrounds. We also report on the status of the analysis from AMANDA-II, a larger version with far greater capabilities. At this stage of analysis, details of the ice properties and other systematic uncertainties of the AMANDA-II telescope are under study, but we have made progress toward critical science objectives. In particular, we present the first preliminary flux limits from AMANDA-II on the search for continuous emission from astrophysical point sources, and report on the search for correlated neutrino emission from Gamma Ray Bursts detected by BATSE before decommissioning in May 2000. During the next two years, we expect to exploit the full potential of AMANDA-II with the installation of a new data acquisition system that records full waveforms from the in-ice optical sensors.
Through combined ROSAT and VLA observations, we have identified 19 BL Lac/quasar candidates. In 1994 December, 1995 January and October, and 1996 January 1996, we obtained spectra of all 19 candidates using the 2.16-m telescope of Beijing Astronomical Observatory. The dispersion used is 195 Å mm−1, which yields a dispersion of about 4.65 Å pixel−1, and the wavelength coverage is 3500–7800 Å. Five of these objects are uniformly featureless, and we identify them as BL Lac objects. Three new quasars are also identified. Table 1 presents VLA positions and redshifts for the 5 new BL Lac objects and three new quasars. By checking them in the NASA/IPAC Extragalactic Database (NED) and Véron-Cetty & Véron’s (1993) Catalogue of Quasars and AGNs, and other recent reports about discovery of new BL Lac objects and quasars, we find that these sources are previously unreported.
The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.
Single-walled carbon nanotube (SWNT) and conductive polymer composite were studied as a potential electrode candidate for plastic electronic devices such as organic light-emitting diodes (OLEDs) and solar cells. A novel conductive polymer, poly(2,7–9,9(di(oxy-2,5,8-trioxadecane))fluorene) (PFO), was synthesized and characterized as a surfactant to disperse SWNTs in solutions. The ethylene oxide (EO) side chain of rigid PFO backbone acts as a template to wrap around SWNTs in solution. Up to 0.02% (by weight) of SWNTs are stabilized and well separated in the solution phase. The carbon nanotube can be dispersed in solutions for over 4 mo. Transmission electron microscopy (TEM) images of solvent cast film suggest highly uniformed SWNT distribution incorporated in the conductive polymer matrix. Transmittance characterization shows the film is as transparent as indium tin oxide conducting glass. Conductivity measurement shows SWNTs can effectively inject charges into the PFO polymer matrix at low voltage. The current versus voltage profile of the SWNT/PFO composite film (2% SWNT in PFO by weight) shows that the majority current conducting is carried by SWNTs.
A completely randomized experiment for planting highland barley in 36 field plots of the Lhasa Agricultural Experiment Station was applied to investigate the effect of urea nitrogen (N) fertilization levels of 0 (control), 156, 258, 363, 465 and 570 kg/ha on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of highland barley straw (HBS). Each urea application was divided into three portions of 0.4, 0.3 and 0.3 and sequentially fertilized at seeding (growth stage (GS) 0), stem elongation (GS 32) and heading (GS 49), respectively. The maturity stage lasted 5–13 days longer in response to the urea N fertilization compared with the control. After removing grains, HBS biomass was harvested at maturity. The biomass yields of leaf, stem, straw and grain were increased quadratically with increasing urea N fertilization, and HBS and grain yields peaked at the estimated urea N fertilization levels of 385 and 428 kg/ha, respectively. The increase of urea N fertilization increased the accumulation of crude protein, cellulose and lignin, and decreased the content of ash and hemicellulose in HBS, resulting in a decrease of the energy content available to be metabolized. After incubating HBS for 72 h with rumen fluids from lactating cows, the urea N fertilization decreased in vitro dry matter disappearance and cumulative gas production, and slightly altered fermentation end-gas composition. Urea N fertilization decreased microbial volatile fatty acid production, but did not alter the ratio of lipogenic acetate and butyrate to glucogenic propionate. In a brief, the current urea N fertilization strategy promoted the growth of the highland barley and increased biomass yield, protein and cellulose accumulation of HBS. A urea N fertilization level ⩽385 kg/ha could be sufficient for growth of highland barley in Tibet without a consequent nutritive reduction in ruminal digestion.
We report the synthesis of Cu2SnS3 (CTS) nanostructures and its incorporation into an inorganic-organic hybrid device to enhance the photoresponse under AM 1.5 G solar illumination. The nanostructures were structurally and optically characterized. From X-ray diffraction (XRD) and Transmission electron microscopy (TEM) the CTS nanocrystals were found to be tetragonal. Flower like structures of CTS were obtained as seen from Scanning electron microscopy (SEM). A band gap of 1.4 eV was obtained from absorption studies. Two devices have been studied, P3HT: PCBM = 1: 1 and CTS: P3HT: PCBM = 8:1:1. The photocurrent increased from a value of 2.33 mA at dark to 2.5 mA for the P3HT-PCBM blend to 3.36 mA for CTS: P3HT: PCBM = 8:1:1 device. The responsivity, sensitivity, external quantum efficiency and specific detectivity increased from 18.81 mA/W, 1.07, 4.25% and 6.88 × 108 Jones respectively for P3HT:PCBM sample to 189.97 mA/W, 1.44, 42.9% and 6.95 × 109 Jones for CTS: P3HT: PCBM = 8:1:1 sample at 1V bias and 1 Sun illumination intensity. The time dependent photoresponse was stable over different ON-OFF cycles. From the fit to the rise and decay curves, the rise and decay time constants were obtained.
Nanomedicine is fostering significant advances in the development of platforms for early detection and treatment of diseases. Nanoparticles (NPs) like quantum dots (QDs) exhibit size-dependent optical properties for light-driven technologies, which might become important in bio-imaging, sensing and photo-dynamic therapy (PDT) applications. The present research addresses the synthesis of water-stable Cd-based QDs via a Microwave-Assisted synthesis approach using cadmium sulfate salt, and thioglycolic acid as Cd- and S-precursors, respectively. Selenide ions were available by reductive leaching of metallic Selenium in Sodium bisulfite solution. The size control and the tunability of the optical properties were achieved by a suitable control of the reaction temperature (in the 140°C- 190°C range) and reaction time (10 minutes-40 minutes). X-ray diffraction analyses suggested the development of a CdSe,S face cubic centered structure; the broadening of the diffraction peaks indicated the presence of very small nanocrystals in the samples. The average crystallite size was estimated at 5.50 nm ± 1.17nm and 3.72 nm ± 0.04 nm, for nanoparticles synthesized at 180°C after 40 minutes or 10 minutes of reaction, respectively. HRTEM images confirmed the crystalline nature and the small size of the synthesized nanocrystals. In turn, the exciton was red-shifted from 461nm to 549 nm when the reaction temperature was prolonged from 140°C to 190 °C, suggesting the crystal growth. The corresponding band gap values were approximately 2.2 eV, confirming the quantum confinement effect (bulk value 1.74eV). This red shift was also evidenced in PL measurements where the main emission peak was shifted from 507 nm to 564 nm when the samples were excited at 420 nm. A narrow size-tunable emission also was supported by the full width at half maximum (∼ 45 nm) for the synthesized nanocrystals. The reactive oxygen species generation capability of as-synthesized QDs was also investigated. The correlation between the particle size and the generation of (ROS) by the degradation of methylene blue was evident with a reduction of MB concentration from 10μM to 7.5μM and 6.7μM after 15 minutes of UV irradiation for reaction time of 10 min. and 40 min. respectively. No additional degradation was noticed after 60 minutes of irradiation.
Escherichia albertii is a newly emerging enteric pathogen that has been associated with gastroenteritis in humans. Recently, E. albertii has also been detected in healthy and sick birds, animals, chicken meat and water. In the present study, the prevalence and characteristics of the eae-positive, lactose non-fermenting E. albertii strains in retail raw meat in China were evaluated. Thirty isolates of such strains of E. albertii were identified from 446 (6·73%) samples, including duck intestines (21·43%, 6/28), duck meat (9·52%, 2/21), chicken intestines (8·99%, 17/189), chicken meat (5·66%, 3/53), mutton meat (4·55%, 1/22) and pork meat (2·44%, 1/41). None was isolated from 92 samples of raw beef meat. Strains were identified as E. albertii by phenotypic properties, diagnostic PCR, sequence analysis of the 16S rRNA gene, and housekeeping genes. Five intimin subtypes were harboured by these strains. All strains possessed the II/III/V subtype group of the cdtB gene, with two strains carrying another copy of the I/IV subtype group. Pulsed-field gel electrophoresis showed high genetic diversity of E. albertii in raw meats. Our findings indicate that E. albertii can contaminate various raw meats, posing a potential threat to public health.
A 3D direct numerical simulation (DNS) study of the evolution of a self-propagating interface in forced constant-density statistically stationary homogeneous isotropic turbulence was performed by solving Navier–Stokes and level-set equations under a wide range of conditions that cover various (from 0.1 to 2.0) ratios of the interface speed
$S_{L}$
to the r.m.s. turbulent velocity
$U^{\prime }$
and various (50, 100 and 200) turbulent Reynolds numbers
$\mathit{Re}$
. By analysing computed data, the following issues were addressed: (i) dependence of the speed and thickness of the fully developed statistically planar mean front that envelops the interface on
$U^{\prime }/S_{L}$
and
$\mathit{Re}$
, (ii) dependence of the fully developed mean turbulent flux of a scalar
$c$
that characterizes the state of the fluid (
$c=0$
and 1 ahead and behind the interface respectively) on
$U^{\prime }/S_{L}$
and
$\mathit{Re}$
, (iii) evolution of the mean front speed, its thickness, and the mean scalar flux during the front development after embedding a planar interface into the forced turbulence and (iv) relation between canonical and conditioned moments of the velocity, velocity gradient and pressure gradient fields.