We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Boundary layer transition over a lifting body of 1.6 m length at $2^\circ$ angle of attack has been simulated at Mach 6 and a unit Reynolds number $1.0 \times 10^7$ m$^{-1}$. The model geometry is the same as the Hypersonic Transition Research Vehicle designed by the China Aerodynamics Research and Development Center. Four distinct transitional regions are identified, i.e. windward vortex region, shoulder vortex region, windward cross-flow region and shoulder cross-flow region. Multi-dimensional linear stability analyses by solving the two-dimensional eigenvalue problem (spatial BiGlobal approach) and the plane-marching parabolized stability equations (PSE3D approach) are further carried out to uncover the dominant instabilities in the last three regions as well as the shoulder attachment-line region. The shoulder vortex is conducive to both inner and outer modes of shear-layer instability, of which the latter most likely trigger the vortex breakdown. A novel method is presented to substantially reduce the computational cost of BiGlobal and PSE3D in resolving the cross-flow instabilities in cross-flow regions. The peak frequencies of cross-flow modes lie between 15 and 45 kHz. Whereas oblique second Mack modes are marginally unstable in the windward cross-flow region, they could be strong enough to compete with the cross-flow modes in the shoulder cross-flow region. In the shoulder attachment-line region, there exists only one unstable mode of Mack instability, differing from previous studies that show a hierarchy of modes in the context of symmetrical attachment-line flows. Results of the numerical simulation and multi-dimensional stability analyses are compared when possible, showing a fair agreement between the two approaches and highlighting the necessity of considering non-parallel effects.
The removal of oil spills or oily organic solvents from water surface is a great technological challenge for environmental protection. Here, a facile method to prepare superhydrophobic and superoleophilic sponge for fast and selective removal of oils from water surface has been reported. The as-prepared sponge exhibited superhydrophobic property with the water contact angle around 165°, which can be used for the absorption of oil spills or oily organic solvents. Furthermore, the resultant sponge showed good durability toward temperature. This fabrication technique is easy to grasp and to be extended. So we believe that this new functionalized sponge could be realized for the large-scale commercialized production.
Thrombin is an essential component of the coagulation cascade and forms immediately in the brain after an intracerebral hemorrhage (ICH). This chapter discusses the evidence concerning the role of thrombin in secondary brain injury following ICH. Thrombin enhances the synthesis and secretion of nerve growth factor in glial cells, modulates neurite outgrowth, and reverses process-bearing stellate astrocytes to epithelial like astrocytes. Thrombin also stimulates astrocyte proliferation and modulates the cytoskeleton of endothelial cells. The effects of thrombin in the brain are modulated by endogenous serine protease inhibitors. Thrombin is responsible for early brain edema development after ICH. Intracerebral injection of thrombin induces brain edema. Modulating thrombin activity in the brain may establish novel therapeutic strategies for ICH. However, because of the dichotomy in the effects of thrombin on brain injury, it is essential to delineate the pathways involved in the deleterious and beneficial effects of thrombin on brain injury.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.