We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A national survey characterized training and career development for translational researchers through Clinical and Translational Science Award (CTSA) T32/TL1 programs. This report summarizes program goals, trainee characteristics, and mentorship practices.
Methods:
A web link to a voluntary survey was emailed to 51 active TL1 program directors and administrators. Descriptive analyses were performed on aggregate data. Qualitative data analysis used open coding of text followed by an axial coding strategy based on the grounded theory approach.
Results:
Fifty out of 51 (98%) invited CTSA hubs responded. Training program goals were aligned with the CTSA mission. The trainee population consisted of predoctoral students (50%), postdoctoral fellows (30%), and health professional students in short-term (11%) or year-out (9%) research training. Forty percent of TL1 programs support both predoctoral and postdoctoral trainees. Trainees are diverse by academic affiliation, mostly from medicine, engineering, public health, non-health sciences, pharmacy, and nursing. Mentor training is offered by most programs, but mandatory at less than one-third of them. Most mentoring teams consist of two or more mentors.
Conclusions:
CTSA TL1 programs are distinct from other NIH-funded training programs in their focus on clinical and translational research, cross-disciplinary approaches, emphasis on team science, and integration of multiple trainee types. Trainees in nearly all TL1 programs were engaged in all phases of translational research (preclinical, clinical, implementation, public health), suggesting that the CTSA TL1 program is meeting the mandate of NCATS to provide training to develop the clinical and translational research workforce.
Ecosystem modeling, a pillar of the systems ecology paradigm (SEP), addresses questions such as, how much carbon and nitrogen are cycled within ecological sites, landscapes, or indeed the earth system? Or how are human activities modifying these flows? Modeling, when coupled with field and laboratory studies, represents the essence of the SEP in that they embody accumulated knowledge and generate hypotheses to test understanding of ecosystem processes and behavior. Initially, ecosystem models were primarily used to improve our understanding about how biophysical aspects of ecosystems operate. However, current ecosystem models are widely used to make accurate predictions about how large-scale phenomena such as climate change and management practices impact ecosystem dynamics and assess potential effects of these changes on economic activity and policy making. In sum, ecosystem models embedded in the SEP remain our best mechanism to integrate diverse types of knowledge regarding how the earth system functions and to make quantitative predictions that can be confronted with observations of reality. Modeling efforts discussed are the Century ecosystem model, DayCent ecosystem model, Grassland Ecosystem Model ELM, food web models, Savanna model, agent-based and coupled systems modeling, and Bayesian modeling.
There is increasing evidence for the health benefits of dietary nitrates including lowering blood pressure and enhancing cardiovascular health. Although commensal oral bacteria play an important role in converting dietary nitrate to nitrite, very little is known about the potential role of these bacteria in blood pressure regulation and maintenance of vascular tone. The main purpose of this review is to present the current evidence on the involvement of the oral microbiome in mediating the beneficial effects of dietary nitrate on vascular function and to identify sources of inter-individual differences in bacterial composition. A systematic approach was used to identify the relevant articles published on PubMed and Web of Science in English from January 1950 until September 2019 examining the effects of dietary nitrate on oral microbiome composition and association with blood pressure and vascular tone. To date, only a limited number of studies have been conducted, with nine in human subjects and three in animals focusing mainly on blood pressure. In general, elimination of oral bacteria with use of a chlorhexidine-based antiseptic mouthwash reduced the conversion of nitrate to nitrite and was accompanied in some studies by an increase in blood pressure in normotensive subjects. In conclusion, our findings suggest that oral bacteria may play an important role in mediating the beneficial effects of nitrate-rich foods on blood pressure. Further human intervention studies assessing the potential effects of dietary nitrate on oral bacteria composition and relationship to real-time measures of vascular function are needed, particularly in individuals with hypertension and those at risk of developing CVD.
PSR B1828–11 is a young pulsar once thought to be undergoing free precession and recently found instead to be switching magnetospheric states in tandem with spin-down changes. Here we show the two extreme states of the mode-changing found for this pulsar and comment briefly on its interpretation.
During 2016 February, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned, and carried out science observations with a phased array feed receiver system on the 64-m diameter Parkes radio telescope. Here, we demonstrate that the phased array feed can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the phased array feed can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of −31 dB can be achieved with a phased array feed beam offset from the centre of the field of view. We discuss the possibilities for using a phased array feed for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.
Depressive symptoms are prominent psychopathological features of Huntington's disease (HD), making a negative impact on social functioning and well-being.
Method
We compared the frequencies of a history of depression, previous suicide attempts and current subthreshold depression between 61 early-stage HD participants and 40 matched controls. The HD group was then split based on the overall HD group's median Hospital Anxiety and Depression Scale-depression score into a group of 30 non-depressed participants (mean 0.8, s.d. = 0.7) and a group of 31 participants with subthreshold depressive symptoms (mean 7.3, s.d. = 3.5) to explore the neuroanatomy underlying subthreshold depressive symptoms in HD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI).
Results
Frequencies of history of depression, previous suicide attempts or current subthreshold depressive symptoms were higher in HD than in controls. The severity of current depressive symptoms was also higher in HD, but not associated with the severity of HD motor signs or disease burden. Compared with the non-depressed HD group DTI revealed lower fractional anisotropy (FA) values in the frontal cortex, anterior cingulate cortex, insula and cerebellum of the HD group with subthreshold depressive symptoms. In contrast, VBM measures were similar in both HD groups. A history of depression, the severity of HD motor signs or disease burden did not correlate with FA values of these regions.
Conclusions
Current subthreshold depressive symptoms in early HD are associated with microstructural changes – without concomitant brain volume loss – in brain regions known to be involved in major depressive disorder, but not those typically associated with HD pathology.
The extraordinary DIBs observed toward Herschel 36 (Dahlstrom et al. 2013) have been analyzed (Oka et al. 2013). The analysis led us to a new way to classify the carriers of DIBs depending on whether the molecules are polar or non-polar. The pronounced Extended Tails toward Red (ETR) observed for DIBs λ5780.5, λ5797.1, and λ6613.6 are explained as due to radiative excitation of high rotational levels of polar carrier molecules in an environment with high radiative temperature ~90 K. Other DIBs (e.g., λ5849.8, λ6196.0, and λ6379.3) which do not show ETR are likely due to non-polar molecules. Model calculations taking into account the interplay of radiative and collisional effects reproduce the observed ETR using realistic molecular parameters if the radiative temperature is sufficiently high (~90 K). The calculation suggests that the carriers of DIBs with ETR are likely medium size molecules with 3 - 6 heavy atoms unless the radiative temperature is much higher.
We present the first results of a dedicated search for Diffuse Interstellar Bands that have profiles with FWHM > 6 Å. Broad DIBs have been noticed in past surveys using averages of multiple sight lines (e.g. Jenniskens & Désert, 1994), but careful detection, measurement, and cataloguing for individual sight lines has not been done since the pioneering work of Herbig (1995). We have initiated an observing campaign using the Apache Point Observatory in order to obtain low-resolution spectra to search for such broad DIBs and monitor their behaviour from star to star. A first sample of 21 stars with 0.3 < E(B-V) < 3.3 mag, along with 15 matched low-reddening stars, were observed with the APO/DIS B400 (R ~ 450) and R300 (R ~ 1000) gratings to obtain spectra having S/N > 500.
Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 Å are found in absorption along the line of sight to Herschel 36, an O star system next to the bright Hourglass nebula of the Hii region Messier 8. Excited lines of CH and CH+ are seen as well. We show that the region is very compact and itemize other anomalies of the gas. An infrared-bright star within 400 AU is noted. The combination of these effects produces anomalous DIBs, interpreted by Oka et al. (2013, see also this volume) as being caused predominantly by infrared pumping of rotational levels of relatively small molecules.
The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.
The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing-array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ∼ 10−9–10−8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper, we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.
The future of centimetre and metre-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries that will be 50 times more sensitive than any existing radio facility. Most of the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from a few hundred MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is a technology demonstrator aimed in the mid-frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phased-array feed systems on parabolic reflectors. The large field-of-view makes ASKAP an unprecedented synoptic telescope that will make substantial advances in SKA key science. ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of two sites selected by the international community as a potential location for the SKA. In this paper, we outline an ambitious science program for ASKAP, examining key science such as understanding the evolution, formation and population of galaxies including our own, understanding the magnetic Universe, revealing the transient radio sky and searching for gravitational waves.
A ‘pulsar timing array’ (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of ‘global’ phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 ms pulsars is being observed at three radio-frequency bands, 50 cm (~700 MHz), 20 cm (~1400 MHz), and 10 cm (~3100 MHz), with observations at intervals of two to three weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters, and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For 10 of the 20 pulsars, rms timing residuals are less than 1 μs for the best band after fitting for pulse frequency and its first time derivative. Significant ‘red’ timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array and a PTA based on the Square Kilometre Array. We also present an ‘extended PPTA’ data set that combines PPTA data with earlier Parkes timing data for these pulsars.
The Parkes pulsar data archive currently provides access to 144044 data files obtained from observations carried out at the Parkes observatory since the year 1991. Around 105 files are from surveys of the sky, the remainder are observations of 775 individual pulsars and their corresponding calibration signals. Survey observations are included from the Parkes 70 cm and the Swinburne Intermediate Latitude surveys. Individual pulsar observations are included from young pulsar timing projects, the Parkes Pulsar Timing Array and from the PULSE@Parkes outreach program. The data files and access methods are compatible with Virtual Observatory protocols. This paper describes the data currently stored in the archive and presents ways in which these data can be searched and downloaded.
We report here on two years of timing of 168 pulsars using the Parkes radio telescope. The vast majority of these pulsars have spin-down luminosities in excess of 1034 erg s−1 and are prime target candidates to be detected in gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides for the ten pulsars being timed at Parkes which have been detected by Fermi in its first year of operation. These ephemerides, in conjunction with the publicly available photonlist, can be used to generate gamma-ray profiles from the Fermi archive. We will make the ephemerides of any pulsars of interest available to the community upon request. In addition to the timing ephemerides, we present the parameters for 14 glitches which have occurred in 13 pulsars, seven of which have no previously known glitch history.The Parkes timing programme, in conjunction with Fermi observations, is expected to continue for at least the next four years.
We describe how observations of pulsars from the Parkes Pulsar Timing Array (PPTA) project have been used to develop a pulsar-based timescale. This is the first such timescale that has a precision comparable to uncertainties in international atomic timescales.
Gravitational wave bursts produced by supermassive binary black hole mergers will leave a persistent imprint on the space-time metric. Such gravitational wave memory signals are detectable by pulsar timing arrays as a glitch event that would seem to occur simultaneously for all pulsars. In this paper, we describe an initial algorithm which can be used to search for gravitational wave memory signals. We apply this algorithm to the Parkes Pulsar Timing Array data set. No significant gravitational wave memory signal is founded in the data set.
Endoscopic, transnasal management of pituitary gland neoplasms is a widely accepted alternative to the traditional microscopic approach. This study aimed to determine outcomes and complication rates for the largest UK series of endoscopic, trans-sphenoidal hypophysectomies reported to date.
Methods:
We performed a retrospective analysis of 136 primary resections and 35 revision cases performed at a tertiary referral centre.
Results and analysis:
Total tumour resection was confirmed in over 85 per cent of primary and revision cases, with biochemical remission in 60 per cent. The incidence of complications such as epistaxis, sphenoid sinus problems, endocrine insufficiency, visual disturbance, post-operative haemorrhage, cranial nerve injury and mortality was significantly lower, compared with similar series using the microscopic approach.
Conclusion:
Despite its steep ‘learning curve’, our series demonstrates that the endoscopic approach not only allows superior anatomical visualisation and therefore facilitates full oncological resection of tumours, but also reduces the incidence of peri-operative complications.
Psychotic-like experiences (PLEs) in the general population are common, particularly in childhood, and may constitute part of a spectrum of normative development. Nevertheless, these experiences confer increased risk for later psychotic disorder, and are associated with poorer health and quality of life.
Method
This study used factor analytic methods to determine the latent structure underlying PLEs, problem behaviours and personal competencies in the general child population, and used item response theory (IRT) to assess the psychometric properties of nine PLE items to determine which items best represented a latent psychotic-like construct (PSY). A total of 7966 children aged 9–11 years, constituting 95% of eligible children, completed self-report questionnaires.
Results
Almost two-thirds of the children endorsed at least one PLE item. Structural analyses identified a unidimensional construct representing psychotic-like severity in the population, the full range of which was well sampled by the nine items. This construct was discriminable from (though correlated with) latent dimensions representing internalizing and externalizing problems. Items assessing visual and auditory hallucination-like experiences provided the most information about PSY; delusion-like experiences identified children at more severe levels of the construct.
Conclusions
Assessing PLEs during middle childhood is feasible and supplements information concerning internalizing and externalizing problems presented by children. The hallucination-like experiences constitute appropriate items to screen the population to identify children who may require further clinical assessment or monitoring. Longitudinal follow-up of the children is required to determine sensitivity and specificity of the PLE items for later psychotic illness.