We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extraneous processing occurs when suboptimal instructional design causes learners to engage in cognitive processing irrelevant to the instructional goal. This chapter explores five principles for reducing extraneous processing in multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity. The coherence principle is that people learn better when extraneous information is excluded from multimedia lessons. The signaling principle is that people learn better when cues are added to highlight the organization of the essential information. The redundancy principle is that people learn better when multimedia lessons include graphics and spoken text rather than graphics, spoken text, and printed text. The spatial contiguity principle is that people learn better when words and corresponding graphics are physically integrated rather than separated. The temporal contiguity principle is that people learn better when words and corresponding graphics are presented simultaneously rather than sequentially.
Video is one of the most popular ways to deliver instruction, yet researchers are only beginning to understand how to design effective video lessons. This chapter explores: (a) how to present the learning material (multimedia design), (b) how to present the instructor (instructor presence), and (c) how to foster student engagement (generative activity). The empirical evidence suggests videos are most effective when they adhere to basic multimedia design principles (e.g., coherence, redundancy, or segmenting), when they are sensitive to the benefits and boundaries of specific instructor presence features (e.g., the instructor’s face, eyes, and hands), and when they explicitly prompt learners to retrieve and make sense of the learning material (e.g., practice testing or self-explaining). Future research is needed to specify boundary conditions and apply video design principles to more authentic educational contexts.
According to the embodiment principle, students learn better when they engage in task-relevant sensorimotor experiences during learning, such as gesturing or manipulating objects. Students may benefit from enacting movements themselves and/or observing them performed by others. Embodied instruction supports learning by offloading thinking to the physical world (i.e., reduced cognitive load) and by drawing analogies between abstract concepts and meaningful actions (i.e., increased generative processing). Prior research has identified a wide range of promising embodiment methods – using gestures to represent math concepts or to trace important elements of diagrams; manipulating concrete (or virtual) objects to understand stories, math concepts, molecular structures, or physics principles; and designing visualizations that present lessons from the learner’s perspective.
When a multimedia lesson containing complicated material is presented at a fast pace, the result can be a form of cognitive overload called essential overload. Three multimedia design methods intended to minimize essential overload are the segmenting, pre-training, and modality principles. The segmenting principle is that people learn more deeply when a multimedia message is presented in learner-paced segments rather than as a continuous unit. The pre-training principle is that people learn more deeply from a multimedia message when they know the names and characteristics of the main concepts. The modality principle is that people learn more deeply from a multimedia message when the words are spoken rather than printed.
Generative learning involves actively making sense of the learning material by engaging in activities for organizing the material and integrating it with one’s existing knowledge. This chapter explores activities that support generative learning from multimedia lessons: verbalizing, visualizing, and enacting. Verbalizing activities involve generating words to distill key ideas (learning by summarizing) or make inferences to clarify the meaning of the material for oneself (learning by self-explaining) or for others (learning by teaching). Visualizing activities involve generating external visuospatial representations that depict physical structures (learning by drawing) or abstract relationships (learning by mapping), or internal mental images that depict the content of the lesson (learning by imagining). Enacting activities involve generating movements such as hand gestures (learning by gesturing) or object manipulations (learning by manipulating) to map abstract concepts onto meaningful actions.