We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
R. C. Lee, University of Chicago,E. G. Cravalho, Massachusetts General Hospital, Boston,J. F. Burke, Professor of Surgery, Chief of Trauma Services, Massachusetts General Hospital, Boston
Rhabdomyolysis is a characteristic clinical feature of electrical trauma. The release of large quantities of myoglobin into the intravascular space and the frequent localization of technetium-99 in skeletal muscle are common manifestations. It was this attribute of electrical trauma victims that caused several experienced clinicians to liken electrical trauma to the mechanical crush injury in its clinical manifestations. More than a decade later, the pathogenic mechanisms responsible for rhabdomyolysis following electrical trauma have yet to be specifically identified by clinical studies. While heat generation by the passage of electrical current (joule heating) has commonly been believed to be the only mediator of tissue injury, over the past few decades considerable evidence has accrued suggesting that other nonthermal mechanisms may be important.
In many cases of electrical trauma, particularly when the duration of electrical contact is short, heating is predictably insignificant in some regions in the current path where skeletal muscle damage is common (see Chapter 14). This information has been the motivation to postulate that in these instances cell membrane rupture due to the induced transmembrane potential may be the important mechanism of cellular damage. This chapter describes the rationale for the hypothesis and details the results of experiments designed to test its validity.
For a given applied electric field, the magnitude of the induced transmembrane potential imposed by the field depends on the cell size and orientation in the field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.