We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The etiology of depression remains poorly understood. Changes in blood lipid levels were reported to be associated with depression and suicide, however study findings were mixed.
Methods
We performed a two-sample Mendelian randomisation (MR) analysis to investigate the causal relationship between blood lipids and depression phenotypes, based on large-scale GWAS summary statistics (N = 188 577/480 359 for lipid/depression traits respectively). Five depression-related phenotypes were included, namely major depression (MD; from PGC), depressive symptoms (DS; from SSGAC), longest duration and number of episodes of low mood, and history of deliberate self-harm (DSH)/suicide (from UK Biobank). MR was conducted with inverse-variance weighted (MR-IVW), Egger and Generalised Summary-data-based MR (GSMR) methods.
Results
There was consistent evidence that triglyceride (TG) is causally associated with DS (MR-IVW β for one-s.d. increase in TG = 0.0346, 95% CI 0.0114–0.0578), supported by MR-IVW and GSMR and multiple r2 clumping thresholds. We also observed relatively consistent associations of TG with DSH/suicide (MR-Egger OR = 2.514, CI 1.579–4.003). There was moderate evidence for positive associations of TG with MD and the number of episodes of low mood. For HDL-c, we observed moderate evidence for causal associations with DS and MD. LDL-c and TC did not show robust causal relationships with depression phenotypes, except for weak evidence that LDL-c is inversely related to DSH/suicide. We did not detect significant associations when depression phenotypes were treated as exposures.
Conclusions
This study provides evidence to a causal relationship between TG, and to a lesser extent, altered cholesterol levels with depression phenotypes. Further studies on its mechanistic basis and the effects of lipid-lowering therapies are warranted.
Depression and anxiety disorders (AD) are the first and sixth leading causes of disability worldwide. Despite their high prevalence and significant disability resulted, there are limited advances in new drug development. Recently, genome-wide association studies (GWAS) have greatly advanced our understanding of the genetic basis underlying psychiatric disorders.
Methods
Here we employed gene-set analyses of GWAS summary statistics for drug repositioning. We explored five related GWAS datasets, including two on major depressive disorder (MDD2018 and MDD-CONVERGE, with the latter focusing on severe melancholic depression), one on AD, and two on depressive symptoms and neuroticism in the population. We extracted gene-sets associated with each drug from DSigDB and examined their association with each GWAS phenotype. We also performed repositioning analyses on meta-analyzed GWAS data, integrating evidence from all related phenotypes.
Results
Importantly, we showed that the repositioning hits are generally enriched for known psychiatric medications or those considered in clinical trials. Enrichment was seen for antidepressants and anxiolytics but also for antipsychotics. We also revealed new candidates or drug classes for repositioning, some of which were supported by experimental or clinical studies. For example, the top repositioning hit using meta-analyzed p values was fendiline, which was shown to produce antidepressant-like effects in mouse models by inhibition of acid sphingomyelinase.
Conclusion
Taken together, our findings suggest that human genomic data such as GWAS are useful in guiding drug discoveries for depression and AD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.