Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T10:09:16.988Z Has data issue: false hasContentIssue false

The International Year of Astronomy

Published online by Cambridge University Press:  05 May 2009

Rights & Permissions [Opens in a new window]

Abstract

Type
Editorial from the Editor-in-Chief
Copyright
Copyright © Cambridge University Press 2009

The United Nations Educational, Scientific and Cultural Organization (UNESCO) have proclaimed the year 2009 to be the International Year of Astronomy, and the International Astronomical Union is coordinating related events throughout this year.

When in 1609, Galileo Galilei first turned his telescopes to the night sky he made striking observations that changed not only the perspective of scientists but practically everybody's conception about the way the universe we live in functions. Moreover his experimental approach to science together with the mandate of precise observation and measurement started science as we know it today. Today new instruments are launched into the sky and help us to understand processes that have been mysteries for a long time. Only few of the scientists in our field take an active part in satellite missions, however our instruments like high power lasers (Cook et al., Reference Cook, Kozioziemski, Nikroo, Wilkens, Bhandarkar, Forsman, Haan, Hoppe, Huang, Mapoles, Moody, Sater, Seugling, Stephens, Takagi and Xu2008; Krasa et al., Reference Krasa, Velyhan, Jungwirth, Krousky, Laska, Rohlena, Pfeifer and Ullschmied2009; Neumayer et al., Reference Neumayer, Bock, Borneis, Brambrink, Brand, Caird, Campbell, Gaul, Goette, Haefner, Hahn, Heuck, Hoffmann, Javorkova, Kluge, Kuehl, Kunzer, Merz, Onkels, Perry, Reemts, Roth, Samek, Schaumann, Schrader, Seelig, Tauschwitz, Thiel, Ursescu, Wiewior, Wittrock and Zielbauer2005; Nobile et al., Reference Nobile, Nikroo, Cook, Cooley, Alexander, Hackenberg, Necker, Dickerson, Kilkenny, Bernat, Chen, Xu, Stephens, Huang, Haan, Forsman, Atherton, Letts, Bono and Wilson2006; Seifter et al., Reference Seifter, Kyrala, Goldman, Hoffman, Kline and Batha2009), intense particle beam accelerators (Hoffmann et al., Reference Hoffmann, Blazevic, Ni, Rosmej, Roth, Tahir, Tauschwitz, Udrea, Varentsov, Weyrich and Maron2005; Kulagin et al., Reference Kulagin, Cherepenin, Hur, Lee and Suk2008; Ni et al., Reference Ni, Kulish, Mintsev, Nikolaev, Ternovoi, Hoffmann, Udrea, Hug, Tahir and Varentsov2008; Singh et al., Reference Singh, Sajal and Gupta2008), and pulsed power drivers (Burdovitsin & Oks, Reference Burdovitsin and Oks2008; Li et al., Reference Li, Yuan, Zhang, Shu and Zhang2008; Liu et al., Reference Liu, Zou, Wang, He and Zeng2008; Mao et al., Reference Mao, Zou, Wang, Liu and Jiang2009; Tarasenko et al., Reference Tarasenko, Baksht, Burachenko, Kostyrya, Lomaev and Rybka2008) can generate matter in extreme conditions. Usually, we find these conditions to prevail in the interior of stars, in stellar atmospheres, in interplanetary space, or even in the interior of planets. With lasers, accelerators, and pulsed power drivers we are able to generate high energy density matter under controlled and reproducible conditions and thus we investigate astrophysical phenomena in the laboratory. In this way, laboratory astrophysics becomes an important part of high energy density science. Many of the effects that have been observed by astronomers using telescopes can now be simulated in laboratory experiments. In this way, we are an active part of the international year of astronomy. Laser and Particle Beams has followed the development of laboratory astrophysics since 1998 (Browne, Reference Browne1988; Rose, Reference Rose1991). Currently, the investigation of laboratory plasma jets in comparison to astrophysical jets has become an interesting object for theoretical and experimental investigation (Kasperczuk et al., Reference Kasperczuk, Pisarczyk, Nicolai, Stenz, Tikhonchuk, Kalal, Ullschmied, Krousky, Masek, Pfeifer, Rohlena, Skala, Klir, Kravarik, Kubes and Pisarczyk2009; Schaumann et al., Reference Schaumann, Schollmeier, Rodriguez-Prieto, Blazevic, Brambrink, Geissel, Korostiy, Pirzadeh, Roth, Rosmej, Faenov, Pikuz, Tsigutkin, Maron, Tahir and Hoffmann2005; Schopper et al., Reference Schopper, Ruhl, Kunzl and Lesch2003; Sizyuk et al., Reference Sizyuk, Hassanein and Sizyuk2007). We encourage our authors to continue to submit articles related to high energy density physics and laboratory astrophysics.

Finally, I want to make our community aware of two conferences later this year that are of importance to our community. From August 24–28, 2009 the 4th Stimulated Brillouin Scattering and Phase Conjugation Workshop will be held in Prague, Czech Republic. Laser and Particle Beams is following the developments in this field very closely and last year we carried a long article on trends in Brillouin scattering and phase conjugation (Kappe et al., Reference Kappe, Strasser and Ostermeyer2007; Kong et al., Reference Kong, Yoon, Beak, Shin, Lee and Lee2007; Ostermeyer et al., Reference Ostermeyer, Kong, Kovalev, Harrison, Fotiadi, Megret, Kalal, Slezak, Yoon, Shin, Beak, Lee, Lu, Wang, Lin, Knight, Kotova, Straber, Scheikh-Obeid, Riesbeck, Meister, Eichler, Wang, He, Yoshida, Fujita, Nakatsuka, Hatae, Park, Lim, Omatsu, Nawata, Shiba, Antipov, Kuznetsov and Zakharov2008). The main event this year will be the Sixth International Conference on Inertial Fusion Sciences and Applications to be held September 6–11, 2009.

References

REFERENCES

Browne, P.F. (1988). Acceleration in the plasma-focus and in astrophysics. Laser Part. Beams 6, 409420.CrossRefGoogle Scholar
Burdovitsin, V.A. & Oks, E.M. (2008). Fore-vacuum plasma-cathode electron sources. Laser Part. Beams 26, 619635.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, P.H., Stenz, C.H., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Krasa, J., Velyhan, A., Jungwirth, K., Krousky, F., Laska, L., Rohlena, K., Pfeifer, M. & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 27, 171178.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Liu, R., Zou, X., Wang, X., He, L. & Zeng, N. (2008). X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University. Laser Part. Beams 26, 3336.CrossRefGoogle Scholar
Mao, Z., Zou, X., Wang, X., Liu, X. & Jiang, W. (2009). Circuit simulation of the behavior of exploding wires for nano-powder production. Laser Part. Beams 27, 4955.CrossRefGoogle Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Ni, P.A., Kulish, M.I., Mintsev, V., Nikolaev, D.N., Ternovoi, V.Y., Hoffmann, D.H.H., Udrea, S., Hug, A., Tahir, N.A. & Varentsov, D. (2008). Temperature measurement of warm-dense-matter generated by intense heavy-ion beams. Laser Part. Beams 26, 583589.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikh-Obeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Rose, S.J. (1991). High-power laser-produced plasma and astrophysics. Laser Part. Beams 9, 869879.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schopper, R., Ruhl, H., Kunzl, T.A. & Lesch, H. (2003). Kinetic simulation of the coherent radio emission from pulsars. Laser Part. Beams 21, 109113.CrossRefGoogle Scholar
Seifter, A., Kyrala, G.A., Goldman, S.R., Hoffman, N.M., Kline, J.L. & Batha, S.H. (2009). Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums. Laser Part. Beams 27, 123127.CrossRefGoogle Scholar
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beams 26, 597604.CrossRefGoogle Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.H., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.F. & Rybka, D.V. (2008). Supershort avalanche electron beam generation in gases. Laser Part. Beams 26, 605617.CrossRefGoogle Scholar