Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T01:39:47.327Z Has data issue: false hasContentIssue false

The influence of stress field on Li electrodeposition in Li-metal battery

Published online by Cambridge University Press:  30 July 2018

Vitaliy Yurkiv*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Tara Foroozan
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Ajaykrishna Ramasubramanian
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Reza Shahbazian-Yassar
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Farzad Mashayek*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
*
Address all correspondence to Vitaliy Yurkiv and Farzad Mashayek at vyurkiv@uic.edu and mashayek@uic.edu
Address all correspondence to Vitaliy Yurkiv and Farzad Mashayek at vyurkiv@uic.edu and mashayek@uic.edu
Get access

Abstract

Lithium (Li) dendrite formation in Li-metal batteries (LMBs) remains a key obstacle preventing LMBs from their widespread application. This study focuses on the role of the stress field in the Li electrodeposits formation and growth. Coupled electrochemical and mechanical phase-field model (PFM) is used to investigate electrodeposited Li evolution under different conditions. The PFM results, using both the anisotropic elastic properties of Li and the random delivery of Li-ions through the solid electrolyte interface, show a significant local stress development indicating a direct correlation between the stress field and the origin of the undesired Li filaments initiation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 42714301 (2004).Google Scholar
2.Yamaki, J., Tobishima, S., Hayashi, K., Keiichi Saito, , Nemoto, Y., and Arakawa, M.: A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources. 74, 219227 (1998).Google Scholar
3.Steiger, J., Richter, G., Wenk, M., Kramer, D., and Mönig, R.: Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem. Commun. 50, 1114 (2015).Google Scholar
4.Bai, P., Li, J., Brushett, F.R., and Bazant, M.Z.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 32213229 (2016).Google Scholar
5.Kushima, A., So, K.P., Su, C., Bai, P., Kuriyama, N., Maebashi, T., Fujiwara, Y., Bazant, M.Z., and Li, J.: Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy. 32, 271279 (2017).Google Scholar
6.Wu, H., Cao, Y., Geng, L., and Wang, C.: In situ formation of stable interfacial coating for high performance lithium metal anodes. Chem. Mater. 29, 35723579 (2017).Google Scholar
7.Zhang, Y.H., Qian, J.F., Xu, W., Russell, S.M., Chen, X.L., Nasybulin, E., Bhattacharya, P., Engelhard, M.H., Mei, D.H., Cao, R.G., Ding, F., Cresce, A.V., Xu, K., and Zhang, J.G.: Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 68896896 (2014).Google Scholar
8.Shin, W.K., Kannan, A.G., and Kim, D.W.: Supplementary: effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces. 7, 2370023707 (2015).Google Scholar
9.Chen, L., Connell, J.G., Nie, A., Huang, Z., Zavadil, K.R., Klavetter, K.C., Yuan, Y., Sharifi-Asl, S., Shahbazian-Yassar, R., Libera, J.A., Mane, A.U., and Elam, J.W.: Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J. Mater. Chem. A. 5, 1229712309 (2017).Google Scholar
10.Wang, Z., Santhanagopalan, D., Zhang, W., Wang, F., Xin, H.L., He, K., Li, J., Dudney, N., and Meng, Y.S.: In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 37603767 (2016).Google Scholar
11.Foroozan, T., Soto, F.A., Yurkiv, V., Sharifi-Asl, S., Deivanayagam, R., Huang, Z., Rojaee, R., Mashayek, F., Balbuena, P.B., and Shahbazian-Yassar, R.: Synergistic effect of graphene oxide for impeding the dendritic plating of Li. Adv. Funct. Mater. 28, 1705917 (2018).Google Scholar
12.Wang, X., Zeng, W., Hong, L., Xu, W., Yang, H., Wang, F., Duan, H., Tang, M., and Jiang, H.: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy. 3, 227235 (2018).Google Scholar
13.Monroe, C. and Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).Google Scholar
14.Barai, P., Higa, K., and Srinivasan, V.: Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys. Chem. Chem. Phys. 19, 2049320505 (2017).Google Scholar
15.Chen, L., Zhang, H.W., Liang, L.Y., Liu, Z., Qi, Y., Lu, P., Chen, J., and Chen, L.Q.: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources. 300, 376385 (2015).Google Scholar
16.Yurkiv, V., Foroozan, T., Ramasubramanian, A., Shahbazian-Yassar, R., and Mashayek, F.: Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior. Electrochim. Acta. 265, 609619 (2018).Google Scholar
17.Enrique, R.A., DeWitt, S., and Thornton, K.: Morphological stability during electrodeposition. MRS Commun. 7, 658663 (2017).Google Scholar
18.Guyer, J.E., Boettinger, W.J., Warren, J.A., and McFadden, G.B.: Phase field modeling of electrochemistry. I. Equilibrium. Phys. Rev. E. 69, 021603 (2004).Google Scholar
19.Guyer, J.E., Boettinger, W.J., Warren, J.A., and McFadden, G.B.: Phase field modeling of electrochemistry. II. Kinetcs. Phys. Rev. E. 69, 113 (2004).Google Scholar
20.Bazant, M.Z.: Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 11441160 (2012).Google Scholar
21.Tonks, M.R., Gaston, D., Millett, P.C., Andrs, D., and Talbot, P.: An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci. 51, 2029 (2012).Google Scholar
22.Ramasubramanian, A., Yurkiv, V., Najafi, A., Khounsary, A., Shahbazian-Yassar, R., and Mashayek, F.: A comparative study on continuum-scale modeling of elasto-plastic deformation in rechargeable ion batteries. J. Electrochem. Soc. 164, A3418A3425 (2017).Google Scholar
23.Bower, A.F.: Applied Mechanics of Solids (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2010).Google Scholar
24.Gaston, D.R., Peterson, J.W., Permann, C.J., Andrs, D., Slaughter, A.E., and Miller, J.M.: Continuous integration for concurrent computational framework and application development. J. Open Res. Softw. 2, 16 (2014).Google Scholar
25.Yurkiv, V., Gutiérrez-Kolar, J.S., Unocic, R.R., Ramsubramanian, A., Shahbazian-Yassar, R., and Mashayek, F.: Competitive ion diffusion within grain boundary and grain interiors in polycrystalline electrodes with the inclusion of stress field. J. Electrochem. Soc. 164, A2830A2839 (2017).Google Scholar
26.Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., and Greer, J.R.: Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. 114, 5761 (2017).Google Scholar
27.Valoen, L.O. and Reimers, J.N.: Transport properties of LiPF6-based Li-Ion battery electrolytes. J. Electrochem. Soc. 152, A882 (2005).Google Scholar
28.Lu, Y., Tu, Z., and Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961969 (2014).Google Scholar
29.Tariq, S., Ammigan, K., Hurh, P., Schultz, R., Liu, P., and Shang, J.: Li material testing- fermilab antiproton source litihum collection lens. Proc. 2003 Bipolar/BiCMOS Circuits Technol. Meet. (IEEE Cat. No. 03CH37440). 3, 14521454 (2003).Google Scholar
30.Ferrese, A. and Newman, J.: Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 161, A1350A1359 (2014).Google Scholar