Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T18:58:20.264Z Has data issue: false hasContentIssue false

The complete mitochondrial genome of Orthocoelium streptocoelium (Digenea: Paramphistomidae) for comparison with other digeneans

Published online by Cambridge University Press:  31 March 2016

Y.Y. Zhao
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
X. Yang
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
H.M. Chen
Affiliation:
Wuchang University of Technology, Wuhan 430223, Hubei, PR China
L.X. Wang
Affiliation:
Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, PR China
H.L. Feng
Affiliation:
Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan 430022, Hubei, PR China
P.F. Zhao
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
L. Tan
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
W.Q. Lei
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
Y. Ao
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
M. Hu
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
R. Fang*
Affiliation:
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China

Abstract

Orthocoelium streptocoelium is a common paramphistome species parasitizing the rumen and/or reticulum of small ruminants, leading to significant losses. This study first determined the complete mitochondrial (mt) genome of O. streptocoelium. The complete mt genome of O. streptocoelium was amplified, sequenced, assembled, analysed and then compared with those of other digeneans. The entire mt genome of O. streptocoelium is 13,800 bp in length, which is smaller than those of other digeneans except for Opisthorchis viverrini. This mt genome contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. The arrangement of the O. streptocoelium mt genome is the same as those of other digeneans except for Schistosoma haematobium and Schistosoma spindale. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes representing 16 digeneans were conducted to assess the relationship of O. streptocoelium with other digeneans. The result indicated that O. streptocoelium is closely related to Paramphistomum cervi and Fischoederius elongates, which is in accordance with their relationships by taxonomy. This complete mt genome of O. streptocoelium enriched the mitochondrial genome data of paramphistomes and provided important molecular markers for diagnostics and studies of population variation, epidemiology, ecology and evolution of O. streptocoelium and other digeneans.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.R. (1998) Inference of phylogeny and taxonomy within the Didymozoidae (Digenea) from the second internal transcribed spacer (ITS2) of ribosomal DNA. Systematic Parasitology 41, 8794.CrossRefGoogle Scholar
Bott, N.J., Campbell, B.E., Beveridge, I., Chilton, N.B., Rees, D., Hunt, P.W. & Gasser, R.B. (2009) A combined microscopic–molecular method for the diagnosis of strongylid infections in sheep. International Journal for Parasitology 11, 12771287.CrossRefGoogle Scholar
Gasser, R.B., Hu, M., Chilton, N.B., Campbell, B.E., Jex, A.J., Otranto, D., Cafarchia, C., Beveridge, I. & Zhu, X. (2006) Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nature Protocols 1, 31213128.Google Scholar
Gasser, R.B., Jabbar, A., Mohandas, N., Hoglund, J., Hall, R.S., Littlewood, D.T. & Jex, A.R. (2012) Assessment of the genetic relationship between Dictyocaulus species from Bostaurus and Cervus elaphus using complete mitochondrial genomic datasets. Parasites & Vectors 5, 241.Google Scholar
Ghatani, S., Shylla, J.A., Roy, B. & Tandon, V. (2014) Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 548, 277284.Google Scholar
Hanna, R.E.B., Williamson, D.S., Mattison, R.G. & Nizami, W.A. (1988) Seasonal reproduction in Paramphistomum epiclitum and Gastrothylax crumenifer, rumen amphistomes of the Indian water buffalo and comparison with biliary paramphistome Gigantocotyle explanatum . International Journal for Parasitology 18, 513521.Google Scholar
Horak, I.G. (1971) Paramphistomiasis of domestic ruminants. Advances in Parasitology 9, 3372.CrossRefGoogle ScholarPubMed
Hu, M., Jex, A.R., Campbell, B.E. & Gasser, R.B. (2007) Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nature Protocols 2, 23392344.Google Scholar
Huffman, J.E. & Fried, B. (1990) Echinostoma and echinostomiasis. Advances in Parasitology 29, 215269.Google Scholar
Le, T.H., Blair, D., Agatsuma, T., Humair, P.F., Campbell, N.J., Iwagami, M., Littlewood, D.T., Peacock, B., Johnston, D.A. & Bartley, J. (2000) Phylogenies inferred from mitochondrial gene orders – a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution 17, 11231125.Google Scholar
Le, T.H., Blair, D. & McManus, D.P. (2001) Complete DNA sequence and gene organization of the mitochondrial genome of the liverfluke, Fasciola hepatica L. (Platyhelminthes; Trematoda). Parasitology 123, 609621.Google Scholar
Lee, D., Choe, S., Park, H., Jeon, H.K., Chai, J.Y., Sohn, W.M., Yong, T.S., Min, D.Y., Rim, H.J. & Eom, K.S. (2013) Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean Journal of Parasitology 51, 719726.Google Scholar
Li, X.R. (2011) Color atlas of animal parasitosis. 2nd edn. Beijing, China Agriculture Press.Google Scholar
Littlewood, D.T., Lockyer, A.E., Webster, B.L., Johnston, D.A. & Le, T.H. (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution 39, 452467.Google Scholar
Liu, G.H., Wang, Y., Song, H.Q., Li, M.W., Ai, L., Yu, X.L. & Zhu, X.Q. (2013) Characterization of the complete mitochondrial genome of Spirocerca lupi: sequence, gene organization and phylogenetic implications. Parasites & Vectors 6, 45.Google Scholar
Liu, G.H., Yan, H.B., Otranto, D., Wang, X.Y., Zhao, G.H., Jia, W.Z. & Zhu, X.Q. (2014a) Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution 79, 325331.Google Scholar
Liu, G.H., Gasser, R.B., Young, N.D., Song, H.Q., Ai, L. & Zhu, X.Q. (2014b) Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica . Parasites & Vectors 7, 150.Google Scholar
Nakao, M., Sako, Y. & Ito, A. (2003) The mitochondrial genome of the tapeworm Taenia solium: a finding of the abbreviated stop codon U. Journal of Parasitology 89, 633635.Google Scholar
Ramesh, A., Small, S.T., Kloos, Z.A., Kazura, J.W., Nutman, T.B., Serre, D. & Zimmerman, P.A. (2012) The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Molecular and Biochemical Parasitology 183, 3241.CrossRefGoogle ScholarPubMed
Sharma, P.N. & Hanna, R.E. (1988) Ultrastructure and cytochemistry of the tegument of Orthocoelium scoliocoelium and Paramphistomum cervi (Trematoda: Digenea). Journal of Helminthology 62, 331343.CrossRefGoogle ScholarPubMed
Shekhovtsov, S.V., Katokhin, A.V., Kolchanov, N.A. & Mordvinov, V.A. (2010) The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitology International 59, 100103.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.Google Scholar
Waeschenbach, A., Webster, B.L. & Littlewood, D.T. (2012) Adding resolution to ordinal level relationships of tapeworm (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution 63, 834847.Google Scholar
Wang, G.L. (2013) Laboratory diagnostic techniques of parasites. Feeding Livestock 3, 3943.Google Scholar
Yamaguti, S. (1975) A synoptical review of life histories of digenetic trematodes of vertebrates. Tokyo, Keigaku Publishing.Google Scholar
Yan, H.B., Wang, X.Y., Lou, Z.Z., Li, L., Blair, D., Yin, H., Cai, J.Z., Dai, X.L., Lei, M.T. & Zhu, X.Q. (2013) The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomidae. Plos One 8, e71300.Google Scholar
Yang, X., Zhao, Y., Wang, L., Feng, H., Tan, L., Lei, W., Zhao, P., Hu, M. & Fang, R. (2015a) Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome. Parasites & Vectors 8, 297.Google Scholar
Yang, X., Gasser, R.B., Koehler, A.V., Wang, L., Zhu, K., Chen, L., Feng, H., Hu, M. & Fang, R. (2015b) Mitochondrial genome of Hypoderaeum conoideum – comparison with selected trematodes. Parasites & Vectors 8, 97.Google Scholar