Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:48:12.155Z Has data issue: false hasContentIssue false

Molecular differentiation of Trichinella spiralis, T. pseudospiralis, T. papuae and T. zimbabwensis by pyrosequencing

Published online by Cambridge University Press:  13 May 2013

L. Sadaow
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
C. Tantrawatpan
Affiliation:
Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathum Thani12121, Thailand
P.M. Intapan
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
V. Lulitanond
Affiliation:
Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
T. Boonmars
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
N. Morakote
Affiliation:
Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai50200, Thailand
E. Pozio
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161Rome, Italy
W. Maleewong*
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
*

Abstract

Nematodes of the genus Trichinella which infect wildlife and domestic animals show a cosmopolitan distribution. These zoonotic parasites are the aetiological agents of a severe human disease, trichinellosis. Twelve taxa are recognized in the Trichinella genus, but they cannot be identified by morphology since they are sibling species/genotypes. For epidemiological studies, it is extremely important to identify each taxon since they have different distribution areas and host ranges. In the present study, polymerase chain reaction (PCR) amplification of the mitochondrial large subunit ribosomal RNA (lsu-RNA) gene coupled with a pyrosequencing technique was developed to distinguish among four Trichinella species: Trichinella spiralis, T. pseudospiralis, T. papuae and T. zimbabwensis. A PCR method was used to amplify the lsu-RNA of Trichinella sp. larvae in mouse muscles and single larvae collected from infected muscles by digestion. The results show that the four Trichinella species can be distinguished by using 26 nucleotides in the target region and the method is sensitive enough to identify individual larvae. The pyrosequencing provides a simple, rapid and high-throughput tool for the differentiation of Trichinella species.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadian, A., Ehn, M. & Hober, S. (2006) Pyrosequencing: history, biochemistry and future. Clinica Chimica Acta 363, 8394.CrossRefGoogle ScholarPubMed
Bandi, C., La Rosa, G., Bardin, M.G., Damiani, G., Comincini, S., Tasciotti, L. & Pozio, E. (1995) Random amplified polymorphic DNA fingerprints of the eight taxa of Trichinella and their comparison with allozyme analysis. Parasitology 110, 401407.Google Scholar
Dick, T.A., Lu, M.C., deVos, T. & Ma, K. (1992) The use of the polymerase chain reaction to identify porcine isolates of Trichinella. Journal of Parasitology 78, 145148.CrossRefGoogle ScholarPubMed
Garkavi, B.L. (1972) The species of Trichinella isolated from wild carnivores. Veterinariia 10, 9091.Google Scholar
Gasser, R.B., Zhu, X.Q., Monti, J.R., Dou, L., Cai, X. & Pozio, E. (1998) PCR-SSCP of rDNA for the identification of Trichinella isolates from mainland China. Molecular and Cellular Probes 12, 2734.CrossRefGoogle ScholarPubMed
Guenther, S., Nockler, K., von Nickisch-Rosenegk, M., Landgraf, M., Ewers, C., Wieler, L.H. & Schierack, P. (2008) Detection of Trichinella spiralis, T. britovi and T. pseudospiralis in muscle tissue with real-time PCR. Journal of Microbiological Methods 75, 287292.Google Scholar
Intapan, P.M., Chotmongkol, V., Tantrawatpan, C., Sanpool, O., Morakote, N. & Maleewong, W. (2011) Molecular identification of Trichinella papuae from a Thai patient with imported trichinellosis. American Journal of Tropical Medicine and Hygiene 84, 994997.Google Scholar
Jongwutiwes, S., Chantachum, N., Kraivichian, P., Siriyasatien, P., Putaporntip, C., Tamburrini, A., La Rosa, G., Sreesunpasirikul, C., Yingyourd, P. & Pozio, E. (1998) First outbreak of human trichinellosis caused by Trichinella pseudospiralis. Clinical Infectious Diseases 26, 111115.Google Scholar
Krivokapich, S.J., Pozio, E., Gatti, G.M., Prous, C.L., Ribicich, M., Marucci, G., La Rosa, G. & Confalonieri, V. (2012) Trichinella patagoniensis n. sp. (Nematoda), a new encapsulated species infecting carnivorous mammals in South America. International Journal for Parasitology 42, 903910.Google Scholar
Kusolsuk, T., Kamonrattanakun, S., Wesanonthawech, A., Dekumyoy, P., Thaenkham, U., Yoonuan, T., Nuamtanong, S., Sa-Nguankiat, S., Pubampen, S., Maipanich, W., Panitchakit, J., Marucci, G., Pozio, E. & Waikagul, J. (2010) The second outbreak of trichinellosis caused by Trichinella papuae in Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene 104, 433437.Google Scholar
Lulitanond, V., Intapan, P.M., Tantrawatpan, C., Sankuntaw, N., Sanpool, O., Janwan, P. & Maleewong, W. (2012) Molecular markers for detection and differentiation of Plasmodium falciparum and Plasmodium vivax in human blood samples by pyrosequencing. Journal of Clinical Microbiology 50, 14551457.Google Scholar
Murrell, K.D., Lichtenfels, R.J., Zarlenga, D.S. & Pozio, E. (2000) The systematics of the genus Trichinella with a key to species. Veterinary Parasitology 93, 293307.CrossRefGoogle ScholarPubMed
Nöckler, K. & Kapel, C.M.O. (2007) Chapter 3. Detection and surveillance for Trichinella: meat inspection and hygiene, and legislation. pp. 6997in Dupouy-Camet, J. & Murrell, K.D. (Eds) FAO/WHO/OIE Guidelines for the surveillance, management, prevention and control of trichinellosis. Paris, World Organisation for Animal Health (OIE).Google Scholar
Pozio, E. & Khamboonruang, C. (1989) Trichinellosis in Thailand: epidemiology and biochemical identification of the aethiological agent. Tropical Medicine and Parasitology 40, 7374.Google ScholarPubMed
Pozio, E., Foggin, C.M., Marucci, G., La Rosa, G., Sacchi, L., Corona, S., Rossi, P. & Mukaratirwa, S. (2002) Trichinella zimbabwensis n.sp. (Nematoda), a new non-encapsulated species from crocodiles (Crocodylus niloticus) in Zimbabwe also infecting mammals. International Journal for Parasitology 32, 17871799.Google Scholar
Pozio, E., Hoberg, E., La Rosa, G. & Zarlenga, D.S. (2009) Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infection, Genetics and Evolution 9, 606616.CrossRefGoogle Scholar
Sreekumar, C., Hill, D.E., Miska, K.B., Vianna, M.C., Yan, L., Myers, R.L. & Dubey, J.P. (2005) Genotyping and detection of multiple infections of Toxoplasma gondii using pyrosequencing. International Journal for Parasitology 35, 991999.CrossRefGoogle ScholarPubMed
Stensvold, C.R., Traub, R.J., von Samson-Himmelstjerna, G., Jespersgaard, C., Nielsen, H.V. & Thompson, R.C. (2007) Blastocystis: subtyping isolates using pyrosequencing technology. Experimental Parasitology 116, 111119.Google Scholar
Stensvold, C.R., Lebbad, M., Verweij, J.J., Jespersgaard, C., von Samson-Himmelstjerna, G., Nielsen, S.S. & Nielsen, H.V. (2010) Identification and delineation of members of the Entamoeba complex by pyrosequencing. Molecular and Cellular Probes 24, 403406.Google Scholar
Tantrawatpan, C., Intapan, P.M., Thanchomnang, T., Lulitanond, V., Boonmars, T., Wu, Z., Morakote, N. & Maleewong, W. (2012) Differential detection of Trichinella papuae, T. spiralis and T. pseudospiralis by real-time fluorescence resonance energy transfer PCR and melting curve analysis. Veterinary Parasitology 185, 210215.CrossRefGoogle Scholar
Van De, N., Trung, N.V., Ha, N.H., Nga, V.T., Ha, N.M., Thuy, P.T., Duyet le, V. & Chai, J.Y. (2012) An outbreak of trichinosis with molecular identification of Trichinella sp. in Vietnam. Korean Journal of Parasitology 50, 339343.Google Scholar
Wu, Z., Nagano, I., Pozio, E. & Takahashi, Y. (1999) Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for the identification of Trichinella isolates. Parasitology 118, 211218.CrossRefGoogle ScholarPubMed
Zarlenga, D.S., Chute, M.B., Martin, A. & Kapel, C.M. (1999) A multiplex PCR for unequivocal differentiation of all encapsulated and non-encapsulated genotypes of Trichinella. International Journal for Parasitology 29, 18591867.Google Scholar