Skip to main content Accessibility help
×
Home

Relationship between Sloan-Kettering virus expression and mammalian follicular development

  • Hyun Kim (a1) (a2), Young Moo Cho (a2), Yeoung-Gyu Ko (a3), Changyong Choe (a2) and Hwan-Hoo Seong (a4)...

Summary

Sloan-Kettering virus gene, a product of a cellular proto-oncogene c-Ski is a unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. The aim of the present study was to locate Ski protein in rat ovaries in order to find insights into the possible involvement of Ski in follicular development. First, expression of c-Ski mRNA in the ovaries of adult female rats was confirmed by RT-PCR. Then, ovaries obtained on the day of estrus were subjected to immunohistochemical analysis for Ski and proliferating cell nuclear antigen (PCNA) in combination with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). RT-PCR and in situ hybridization revealed that c-Ski mRNA was expressed in the ovaries of the adult rat on the day of estrous and localized mainly in the granulose cells. Ski was expressed in granulosa cells that were positive for TUNEL, but negative for PCNA, regardless of the shape and size of follicles. Expression of Ski in TUNEL-positive granulosa cells, but not in PCNA-positive granulosa cells, was also verified in rats having atretic follicles with double staining. These results indicate that Ski is profoundly expressed in the granulosa cells of atretic follicles, but not in growing follicles. Based on the present findings, Ski may play a role in the apoptosis of granulosa cells during follicular atresia.

Copyright

Corresponding author

All correspondence to: Hwan-Hoo Seong. Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea. Tel: +82 63 620 3525. Fax: +82 63 620 3591. E-mail: Seonghh@korea.kr

References

Hide All
Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K. & Kawabata, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with smads. J. Biol. Chem. 274, 35269–77.
Ambrose, M.R., Bottazzi, M.E. & Goodenow, M.M. (1995). Expression of the c-Ski proto-oncogene during cell cycle arrest and myogenic differentiation. DNA Cell. Biol. 14, 701–7.
Barak, Y., Juven, T., Haffner, R. & Oren, M. (1993). Mdm2 expression is induced by wild type p53 activity. J. EMBO 12, 461–8.
Berk, M., Desai, S.Y., Heyman, H.C. & Colmenares, C. (1997). Mice lacking the Ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev. 11, 2029–39.
Boone, D.L., Carnegie, J.A., Rippstein, P.U. & Tsang, B.K. (1997). Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol. Reprod. 57, 420–7.
Buckbinder, L., Talbott, R., Valesco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B.R. & Kley, N. (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 77, 646–9.
Byskov, A.G. (1978). Follicular atresia. In The Vertebrate Ovary (ed. Jones, R.E.), pp. 533–62. New York: Plenum Press.
Byskov, A.G. (1979). Atresia. In Ovarian Follicular Development and Function (eds Midgley, F.R. & Sadler, W.A.), pp. 4158. NewYork: Plenum. Press.
Colmenares, C. & Stavnezer, E. (1989). The Ski oncogene induces muscle differentiation in quail embryo cells. Cell 59, 293303.
Dhanasekaran, N. & Moudgal, N.R. (1989). Biochemical and histological validation of a model to study follicular atresia in rats. Endocrinol. Exp. 23, 155–66.
El-Diery, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W. & Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–25.
Greenwald, G.S. & Terranova, P.F. (1988). Follicular selection and its control. In The Physiology of Reproduction (eds Knobil, E. & Neill, J.), pp. 387435. New York: Raven Press.
Grimes, H.L., Ambrose, M.R. & Goodenow, M.M. (1993). c-Ski transcripts with and without exon 2 are expressed in skeletal muscle and throughout chick embryogenesis. Oncogene. 8, 2863–8.
Hirshfield, A.N., Flickinger, G.L. & Ben-Rafael, Z. (1988). Flow cytofluorometric analysis of granulosa cell proliferation in rats. J. Reprod. Fertil. 84, 231–8.
Kavsak, P. Rasmussen, R.K. Causing, C.G. Bonni, S. Zhu, H. Thomsen, G.H. & Wrana, J.L. (2000). Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol. Cell 6, 1365–75.
Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. & Fornace, J.R. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–97.
Kawabata, M., Imamura, T., Inoue, H., Hanai, J., Nishihara, A., Hanyu, A., Takase, M., Ishidou, Y., Udagawa, Y., Oeda, E., Goto, D., Yagi, K., Kato, M. & Miyazono, K. (1999). Intracellular signaling of the TGF-β superfamily by Smad proteins. Ann. N. Y. Acad. Sci. 886, 7382.
Liu, X., Sun, Y., Weinberg, R.A. & Lodish, H.F. (2001). Ski/Sno and TGF-β signaling. Cytokine Growth Factor Rev. 12, 18.
Luo, K. (2003). Negative regulation of BMP signaling by the Ski oncoprotein. J. Bone Joint Surg. Am. 3, 3943.
Lyons, G.E., Micales, B.K., Herr, M.J., Horrigan, S.K., Namciu, S., Shardy, D. & Stavnezer, E. (1994). Protooncogene c-Ski is expressed in both proliferating and post mitotic neuronal populations. Dev. Dynam. 201, 354–65.
Medrano, E.E. (2003). Repression of TGF-β signaling by the oncogenic protein Ski in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 22, 3123–9.
Miyashita, T., Kitada, S., Krajewski, S., Horne, W.A., Delia, D. & Reed, J.C. (1995). Overexpression of the Bcl-2 protein increases the half-life of p21 Bax. J. Biol. Chem. 44, 260–5.
Muller, M., Strand, S., Hug, H., Heinemann, E.M., Walczak, H., Hofmann, W.J., Stremmel, W., Krammer, P.H. & Galle, P. (1997). Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403–13.
Mutai, H., Toyoshima, Y., Sun, W., Hattori, N., Tanaka, S. & Shiota, K. (2000). PAL31, a novel nuclear protein, expressed in the developing brain. Biol. Chem. Biophys. Res. Commun. 274, 427–33.
Nagase, T., Mizuguchi, G., Nomura, N., Ishizaki, R., Ueno, Y. & Ishii, S. (1990). Requirement of protein co-factor for the DNA-binding function of the human Ski proto-oncogene product. Nucl. Acids Res. 18, 337–43.
Nagano, Y., Mavrakis, K.J., Lee, K.L., Fujii, T., Koinuma, D., Sase, H., Yuki, K., Isogaya, K., Saitoh, M., Imamura, T., Episkopou, V., Miyazono, K. & Miyazawa, K. (2007). Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J. Biol. Chem. 282, 20492–501.
Nagano, Y., Koinuma, D., Miyazawa, K. & Miyazono, K. (2010). Context-dependent regulation of the expression of c-Ski protein by Arkadia in human cancer cells. J. Biochem. 147, 545–54.
Nicol, R. & Stavnezer, E. (1998). Transcriptional repression by v-Ski and c-Ski mediated by a specific DNA binding site. J. Biol. Chem. 273, 3588–97.
Okamoto, K. & Beach, D. (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816–22.
Saitoh, M., Imamura, T., Episkopou, V., Miyazono, K. & Miyazawa, K. (2007). Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J. Biol. Chem. 282, 20492–501.
Shinagawa, T., Nomura, T., Colmenares, C., Ohira, M., Nakagawara, A. & Ishii, S. (2001). Increased susceptibility to tumorigenesis of Ski-deficient heterozygous mice. Oncogene 20, 8100–8.
Shi, Y. & Massagu, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685700.
Soeta, C., Suzuki, M., Suzuki, S., Naito, K., Tachi, C. & Tojo, H. (2001). Possible role for the c-Ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats. Dev. Growth Differ. 43, 155–64.
Sun, W., Hattori, N., Mutai, H., Toyoshima, Y., Kimura, H., Tanaka, S. & Shiota, K. (2001). PAL31, a nuclear protein required for progression to the S phase. Biochem. Biophys. Res. Commun. 280, 1048–54.
Sun, W., Kimura, H., Hattori, N., Tanaka, S., Matsuyama, S. & Shiota, K. (2006). Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor. Biochem. Biophys. Res. Commun. 342, 817–23.
Sutrave, P., Kelly, A.M. & Hughes, S.H. (1990). Ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 4, 1462–72.
Wu, J.W., Krawitz, A.R., Chai, J., Li, W., Zhang, F., Luo, K. & Shi, Y. (2002). Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-β signaling. Cell 111, 357–67.
Xiao, S., Robertson, D.M. & Findlay, J.K. (1992). Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology 131, 1009–16.
Yamanouchi, K., Kano, K., Soeta, C., Hasegawa, T., Ishida, N., Mukoyama, H., Tojo, H. & Tachi, C. (1997). Studies on expression of the c-Ski gene in equine (thoroughbred) tissues. J. Equine Sci. 8, 13–9.
Yamanouchi, K., Soeta, C., Harada, R., Naito, K. & Tojo, H. (1999). Endometrial expression of cellular protooncogene c-Ski and its regulation by estradiol-17β. FEBS Lett. 449, 273–6.
Yamanouchi, K., Soeta, C., Naito, K. & Tojo, H. (2000). Progesterone pretreatment inhibits the expression of c-Ski mRNA and epithelial cell proliferation induced by estrogen in the rat uterus. J. Reprod. Dev. 46, 257–63.
Yoshiko, Y., Oizumi, K., Hasegawa, T., Minamizaki, T., Tanne, K., Maeda, N. & Aubin, J.E. (2010). A subset of osteoblasts expressing high endogenous levels of PPAR switches fate to adipocytes in the rat calvaria cell culture model. PLoS One 5, 11782.
Zhao, J., Taverne, M.A., Weijden, G.C., Bevers, M.M. & Hurk, R. (2001). Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II. Biol. Reprod. 65, 967–77.

Keywords

Relationship between Sloan-Kettering virus expression and mammalian follicular development

  • Hyun Kim (a1) (a2), Young Moo Cho (a2), Yeoung-Gyu Ko (a3), Changyong Choe (a2) and Hwan-Hoo Seong (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed