Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T17:54:38.723Z Has data issue: false hasContentIssue false

A preliminary study of the effects of organic farming on oocyte quality in ewe lambs

Published online by Cambridge University Press:  07 December 2016

A. Casao
Affiliation:
IUCA Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Zaragoza, Spain.
G. A. María
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Zaragoza, Spain.
J.A. Abecia*
Affiliation:
Instituto Universitario de Investigación en Ciencias Ambientales (IUCA) Department de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain. IUCA Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Zaragoza, Spain.
*
All correspondence to: José-Alfonso Abecia. Instituto Universitario de Investigación en Ciencias Ambientales (IUCA) Department de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain. Tel +34 876554159. E-mail: alf@unizar.es

Summary

This study tested whether feeding Rasa Aragonesa ewes certified organic feed, from 15 days before mating until lamb weaning, improved oocyte quality and in vitro maturation (IVM) and fertilization (IVF) performances of the offspring. In a second experiment, ovaries from ewe lambs that were bred on an organic farm and were of the same breed were compared with those from conventionally bred animals. The number (± standard error of the mean) of healthy oocytes per ewe lamb did not differ significantly between organic (12.2 ± 3.3) and conventionally (13.6 ± 4.0) fed ewes. Ovaries from ewe lambs born on an organic farm had significantly (P < 0.0001) more healthy oocytes per ewe lamb (39.6 ± 5.2) than did those born on a conventional farm (25.0 ± 4.2), and higher IVM (76.5% vs. 53.1%, P < 0.0001) and IVF (97.3 vs. 91%, P < 0.05) rates. In conclusion, this preliminary approach to the study of the effect of organic procedures on the sheep oocyte quality indicates that the total integration in the complete organic system improved the oocyte quality of ewe lambs, although organic feeding alone was insufficient to improve quality.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecia, J.A., Casao, A., Pascual-Alonso, M., Lobón, S., Aguayo-Ulloa, L.A., Forcada, F., Meikle, A., Sosa, C., Marín, R.H., Silva, M.A. & Maria, G.A. (2015). Periconceptional undernutrition increases quantity and quality of oocyte population, but not cognitive or emotional response of 60-day-old lambs. J. Anim. Physiol. Anim. Nutr. 99, 501–10.CrossRefGoogle ScholarPubMed
Abecia, J.A., Casao, A., Pascual-Alonso, M., Lobón, S., Aguayo-Ulloa, L.A., Meikle, A., Forcada, F., Sosa, C., Marín, R.H., Silva, M.A. & Maria, G.A. (2014). The effect of periconceptional undernutrition of sheep on the cognitive/emotional response and oocyte quality of offspring at 30 days of age. J. Dev. Orig. Health Dis. 5, 7987.Google Scholar
AFRC (1993). Energy and Protein Requirements of Ruminants. An Advisor Manual Prepared by the Agricultural and Food Research Council Technical Committee on Responses to Nutrients. CAB International, Wallingford, UK.Google Scholar
Alrøe, H.F., Vaarst, M. & Kristensen, E.S. (2001). Does organic farming face distinctive livestock welfare issues?–A conceptual analysis. J. Agr. Environ. Ethic. 14, 275–99.Google Scholar
Ashworth, C.J., Toma, L.M. & Hunter, M.G. (2009). Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Phil. Trans. R. Soc. B 364, 3351–61.CrossRefGoogle ScholarPubMed
Bellingham, M., Amezaga, M.R., Mandon-Pepin, B., Speers, C.J., Kyle, C., Evans, N.P., Sharpe, R.M., Cotinot, C., Rhind, S.M. & Fowler, P.A. (2013). Exposure to chemical cocktails before or after conception–The effect of timing on ovarian development. Mol. Cell Endocrinol. 376, 156–72.Google Scholar
Bloomfield, F.H. (2011). Epigenetic modifications may play a role in the developmental consequences of early life events. J. Neurodev. Disord. 3, 348–55.Google Scholar
European Commission (2007). Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:189:0001:0023:EN:PDF Google Scholar
Forcada, F., Buffoni, A., Abecia, J.A., Asenjo, B., Palacín, I., Vázquez, M.I., Rodríguez-Castillo, J.D.C., Sánchez-Prieto, L. & Casao, A. (2011). Maximising embryo production in endangered sheep breeds: in vitro procedures that complement in vivo techniques. J. Appl. Anim. Res. 39, 412–17.CrossRefGoogle Scholar
Fowler, P.A., Dora, N.J., McFerran, H., Amezaga, M.R., Miller, D.W., Lea, R.G., Cash, P., McNeilly, A.S., Evans, N.P., Cotinot, C., Sharpe, R.M. & Rhind, S.M. (2008). In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep. Mol. Hum. Reprod. 14, 269–80.Google Scholar
Hou, Y.J., Xiong, B., Zheng, W.J., Duan, X., Cui, X.S., Kim, N.H., Wang, Q., Xu, Y.X. & Sun, S.C. (2014). Oocyte quality in mice is affected by a mycotoxin-contaminated diet. Environ. Mol. Mutagen. 55, 354–62.Google ScholarPubMed
Lea, R.G., Amezaga, M.R., Loup, B., Mandon-Pépin, B., Stefansdottir, A., Filis, P., Kyle, C., Zhang, Z., Allen, C., Purdie, L., Jouneau, L., Cotinot, C., Rhind, S.M., Sinclair, K.D. & Fowler, P.A. (2016). The fetal ovary exhibits temporal sensitivity to a ‘real-life’ mixture of environmental chemicals Sci. Rep. 6, 22279.CrossRefGoogle ScholarPubMed
Ledda, S., Bogliolo, L., Leoni, G. & Naitana, S. (1999). Production and lambing rate of blastocysts derived from in vitro matured oocytes after gonadotropin treatment of prepubertal ewes. J. Anim. Sci. 77, 2234–39.Google Scholar
Lepherd, M., Canfield, P., Hunt, G., Thomson, P. & Bosward, K. (2011). Assessment of the Short-term systematic effect of and acute phase response to mulesing and other options for controlling breech flystrike in Merino lambs. Aust. Vet. J. 89, 1926.CrossRefGoogle Scholar
Morton, K.M., Catt, S.L., Maxwell, W.M. & Evans, G. (2005). Effects of lamb age, hormone stimulation and response to hormone stimulation on the yield and in vitro developmental competence of prepubertal lamb oocytes. Reprod. Fertil. Dev. 17, 593601.Google Scholar
Rhind, S.M., Rae, M.T. & Brooks, A.N. (2001). Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction 122, 205–14.Google Scholar
Smith, J., Ferguson, D., Jauregui, G., Panarce, M., Medina, M., Lehnert, S. & Hill, J.R. (2008). Short-term maternal psychological stress in the post-conception period in ewes affects fetal growth and gestation length. Reproduction 136, 259–65.Google Scholar
Wani, N.A., Wani, G.M., Khan, M.Z. & Sidiqi, M.A. (1999). Effect of different factors on the recovery rate of oocytes for in vitro maturation and in vitro fertilization procedures in sheep. Small Rumin. Res. 34, 71–6.Google Scholar