Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:41:20.880Z Has data issue: false hasContentIssue false

Moments of induced spawning and embryonic development of Brycon amazonicus (Teleostei, Characidae)

Published online by Cambridge University Press:  09 May 2013

Laura Satiko Okada Nakaghi*
Affiliation:
Faculdade de Ciências Agrárias e Veterinárias – São Paulo State University, (FCAV/UNESP), Jaboticabal, São Paulo, Brazil.
Erika Neumann
Affiliation:
Piscicultura Buriti, Nova Mutum, Mato Grosso, Brazil.
Francine Faustino
Affiliation:
Aquaculture Center of UNESP (CAUNESP), Jaboticabal, São Paulo, Brazil.
José Mário Ribeiro Mendes
Affiliation:
Piscicultura Buriti, Nova Mutum, Mato Grosso, Brazil.
Francisco Manoel de Braga
Affiliation:
Faculdade de Filosofia, Ciências e Letras – São Paulo State University, (RC/UNESP), Rio Claro, São Paulo, Brazil.
*
All correspondence to: Laura Satiko Okada Nakaghi. Faculdade de Ciências Agrárias e Veterinárias – São Paulo State University, (FCAV/UNESP), Jaboticabal, São Paulo, Brazil. Tel:/Fax: +55 16 3209 2654 (ext. 232). e-mail: laurankg@fcav.unesp.br

Summary

Based on the economic and ecological relevance of Brycon amazonicus, the goal of this work was to describe the diameter of oocytes and eggs of this species, as well as the chronological embryonic development. The material was provided by Buriti fish farm, Nova Mutum – MT, Brazil. Samples of both oocytes and eggs were obtained from extrusion to hatching. The material was fixed and measured under stereomicroscope, and the samples were divided for light microscopy or scanning electron microscopy (SEM) analyses. At extrusion, the oocytes were bluish green. The frequency distribution of oocytes revealed that 87.7% of them ranged from 1.11–1.30 mm in diameter. During incubation, the total diameter of the eggs increased from 1.22 ± 0.04 mm to 3.06 ± 0.46 mm in the first 60 min post fertilization (PF), and growth ceased at 180 min PF. Between 10–30 s PF, most eggs were fertilized and fertilization cones were observed from 10 s onwards after gamete activation. The main fertilization events took place asynchronically and spermatozoa were visualized in the micropyle vestibule up to 90 s PF. The first cell was formed in the centre of the blastodisc 20 min PF. The morula stage was identified 2 h PF and, 3 h later, 70% of the yolk was covered by the blastoderm; the blastopore was almost entirely closed at 6 h PF. The cephalic and caudal regions of the embryo could be defined 8 h PF and hatching occurred after 13 h of embryonic development. The larvae hatched with undifferentiated organic systems and with a large yolk sac, free from swimming abilities or visual acuity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade-Talmelli, E.F., Kavamoto, E.T. & Fenerich-Verani, N. (2001a). Características seminais de piabanha, Brycon insignis (Steindachner, 1876) após estimulação hormonal. Bol. Instit. Pesca 27, 149–54.Google Scholar
Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001b). Embryonic and larval development of the ‘piabanha’, Brycon insignis Steindachner, 1876 (Pisces, Characidae). Bol. Instit. Pesca 27, 21–7.Google Scholar
Andrade-Talmelli, E.F., Kavamoto, E.T., Narahara, M.Y. & Fenerich-Verani, N. (2002). Reprodução induzida de piabanha, Brycon insignis (Steindachner, 1876) mantida em cativeiro. Rev. Bras. Zootec. 31, 803–11.Google Scholar
Borçato, F.L., Bazzoli, N. & Sato, Y. (2004). Embryogenesis and larval ontogeny of the ‘piau-gordura’, Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev. Bras. Zool. 21, 117–22.Google Scholar
Brasil, D.F., Nakaghi, L.S.O., Santos, H.S.L., Grassiotto, I.Q. & Foresti, F. (2002). Estudo morfológico da fertilização em curimbatá Prochilodus lineatus (Valenciennes, 1836). In I Congresso Iberoamericano Virtual de Acuicultura. pp. 733–47. Available at www.civ2002.org.Google Scholar
Castellani, L.R., Tse, H.G., Leme dos Santos, H.S., Faria, R.H.S. & Santos, M.L.S. (1994). Desenvolvimento embrionário do curimbatá Prochilodus lineatus (Valenciennes, 1836) (Cypriniformes, Prochilodontidae). Rev. Bras. Cienc. Morfol. 11, 99105.Google Scholar
Chen, K.C., Shao, K.T. & Yang, J.S. (1999). Using micropylar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J. Fish. Biol. 55, 288300.Google Scholar
Cruz-Casallas, P.E., Lombo-Rodríguez, D.A. & Velasco-Santamaria, Y.M. (2005). Milt quality and spermatozoa morphology of captive Brycon siebenthalae (Eigenmann) broodstock. Aquacult. Res. 36, 682–6.Google Scholar
Depêche, J. & Billard, R. (1994). Embryology in Fish: A Review. Paris: Société Française d'Ichtyologie. 123 pp.Google Scholar
Faustino, F., Nakaghi, L.S.O. & Neumann, E. (2010). Brycon gouldingi (Teleostei, Characidae): aspects of the embryonic development in a new fish species with aquaculture potential. Zygote 19, 351–63.CrossRefGoogle Scholar
Feitosa, W. (2004). Amazônia. Available at www.pesca.outdoortravel.com.br. Accessed 6 September 2008.Google Scholar
Ganeco, L.N. (2003). Análise dos ovos de piracanjuba, Brycon orbignyanus (Valenciennes, 1849), durante o desenvolvimento embrionário, sob condições de reprodução induzida. 2003. Dissertação (Mestrado em Aqüicultura). Centro de Aqüicultura, Universidade Estadual Paulista – UNESP: Jaboticabal, 66 pp.Google Scholar
Ganeco, L.N. & Nakaghi, L.S.O. (2003). Morfologia da micrópila e da superfície dos ovócitos de piracanjuba, Brycon orbignyanus (Osteichthyes, Characidae), sob microscopia eletrônica de varredura. Acta Sci. 25, 227–31.Google Scholar
Goltermann, H.L., Clymo, R.S. & Ohnstad, M.A.M. (1978). Methods for Physical and Chemical Analysis of Freshwaters. London: Blackwell Science Publication, IBP Handbook No. 8, 214 pp.Google Scholar
Gomes, L.C. (1998). Matrinxã: sistema intensivo para criação de larvas de Brycon cephalus. Panorama Aquicult. 45, 1520.Google Scholar
Gomes, L.C. & Urbinati, E.C. (2005). Matrinxã (Brycon Amazonicus). In Espécies nativas para piscicultura no Brasil (ed. Baldisserotto, B. & Gomes, L.C.), Ed. da UFSM Santa Maria, pp. 149–74.Google Scholar
Gomes, B.V.C., Scarpelli, R.S., Arantes, F.P., Sato, Y., Bazzoli, N. & Rizzo, E. (2007). Comparative oocyte morphology and early development in three species of trahiras from the São Francisco River basin, Brazil. J. Fish Biol. 70, 1412–29.Google Scholar
Kudo, S. (1980). Sperm penetration and the formation of a fertilization cone in the common carp egg. Dev. Growth Differ. 22, 403–14.Google Scholar
Kunz, Y.W. (2004). Development Biology of Teleost Fishes. Springer: The Netherlands, 636 pp.Google Scholar
Landinez, M.A., Senhorini, J.A., Sanabria, A.I., Baldan, A.P. & Urbinati, E.C. (2004). Desenvolvimento embrionário e larval de piracanjuba (Brycon orbignyanus). Bol. Tec. CEPTA 17, 112.Google Scholar
Lima, F.C.T. (2003). Subfamily Bryconinae (Characins, Tetras). In Check List of the Freshwater Fishes of South and Central America (ed. Reis, R.E., Kullander, S.O. & Ferraris, C.J. Jr), pp. 174–81. Porto Alegre:EDPURCS.Google Scholar
Lopes, R.N.M., Senhorini, J.A. & Soares, M.C.F. (1995). Desenvolvimento embrionário e larval do matrinxã Brycon cephalus Günther 1869, (Pisces, Characidae). Bol. Tec. CEPTA 8, 2539.Google Scholar
Matkovic, M., Cussac, V.E., Cukier, M., Guerrero, G.A. & Maggese, M.C. (1985). Desarrollo embrionario de Rhamdia sapo (Valenciennes, 1840) Eigenmann y Eigenmann, 1888 (Pisces, Pimelodidae). I. Segmentación, morfogénesis y organogénesis temprana. Rev. Bras. Biol., 45, 3950.Google Scholar
Mira-López, T.M., Medina-Robles, V.M., Velasco-Santamaría, Y.M. & Cruz-Casallas, P.E. (2007). Valores morfométricos en larvas de yamú Brycon amazonicus (Pisces: Characidae) obtenidas con semen fresco y crioconservado. Actualid Biol. 2007, 29, 203–13.Google Scholar
Morrison, C.M., Miyake, T. & Wright, J.R. Jr (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces: Cichlidae). J. Morphol. 247, 172–95.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes; Prochilodontinae). Zygote 14, 217–29.Google Scholar
Oliveira, A.M.B.M.S., Conte, L. & Cyrino, J.E.P. (2004). Produção de Characiformes autóctones. In Tópicos especiais em piscicultura de água doce (ed. by Cyrino, J.E.P., Urbinati, E.C., Fracalossi, D.M. & Castagnolli, N.), pp. 217–37. São Paulo: TecArt.Google Scholar
Pardo-Carrasco, S.C., Arias-Castellanos, J.A., Suárez-Mahecha, H., Cruz-Casallas, P.E., Vásques-Torres, W., Atencio-Garcia, V. & Zaniboni-Filho, E. (2006a). Inducción a la maduración final y ovulación del yamú Brycon amazonicus con EPC y mGnRH-a. Rev Col. Cienc. Pec. 19, 160–6.Google Scholar
Pardo-Carrasco, S.C., Zaniboni-Filho, E., Arias-Castellanos, J.A., Suárez-Mahecha, H., Atencio-Garcia, V. & Cruz-Casallas, P.E. (2006b). Evaluation of milt quality of the yamú Brycon amazonicus under hormonal induction. Rev. Col. Cienc. Pec. 19, 34139.Google Scholar
Reynalte-Tataje, D., Zaniboni-Filho, E., Esquivel, J.R. (2004). Embryonic and larvae development of piracanjuba, Brycon orbignyanus Valenciennes, 1849 (Pisces, Charecidae). Acta Sci. 26, 6771.Google Scholar
Ribeiro, C.R., Santos, H.S.L. & Bolzan, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (pacu, Piaractus mesopotamicus; tambaqui, Colossoma macropomum e o híbrido tambacu). Rev. Bras. Biol. 55, 6578.Google Scholar
Ricardo, M.C.P., Aguiar, C.A., Rizzo, E. & Bazzoli, N. (1996). Morfologia da micrópila e da célula micropilar em teleósteos neotropicais de água doce. Arq. Bras. Med. Vet. Zootec. 48, 1724.Google Scholar
Rizzo, E. & Bazzoli, N. (1993). Oogenesis, oocyte surface and micropylar apparatus of Prochilodus affinis Reinhardt, 1874 (Pisces Characiformes). Europ. Arch. Biol. 104, 16.Google Scholar
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615–32.Google Scholar
Romagosa, E., Narahara, M.Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the ‘matrinxã’, Brycon cephalus (Pisces, Characidae). Bol. Instit. Pesca 27, 2932.Google Scholar
Sampaio, K.H. (2006). Superfície ovocitária e desenvolvimento inicial de quatro espécies de peixes de interesse comercial da bacia do rio São Francisco. Dissertação (Mestrado em Biologia Celular). Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG: Belo Horizonte. 53 pp.Google Scholar
Sipaúba-Tavares, L.H. (1995). Limnologia aplicada à aqüicultura. Jaboticabal: Funep – UNESP. 70 pp.Google Scholar
Vasques, L.H. (2003). Participação do hormônio triiodotironina (T3) no desenvolvimento inicial de matrinxã (Brycon cephalus). Tese (Doutorado em Aqüicultura). Universidade Estadual Paulista – UNESP: Jaboticabal. 146 pp.Google Scholar
Vazzoler, A.E.M. (1996). Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: EDUEM. 169 pp.Google Scholar
Woynarovich, E. & Horváth, L. (1983). A propagação artificial de peixes de águas tropicais: manual de extensão. Brasília: FAO/CODEVASF/CNPq. 225 pp.Google Scholar