Skip to main content Accessibility help

Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos

  • Beatriz C. S. Leão (a1), Nathália A. S. Rocha-Frigoni (a1), Elaine C. Cabral (a2), Marcos F. Franco (a2), Christina R. Ferreira (a2), Marcos N. Eberlin (a2), Paulo R. Filgueiras (a2) and Gisele Z. Mingoti (a3)...


This study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2–20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase ‘e’ and ‘p‘, respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.


Corresponding author

All correspondence to: G.Z. Mingoti, School of Veterinary Medicine, Department of Animal Health, UNESP-Universidade Estadual Paulista, Araçatuba 16050–680, São Paulo, Brazil. Tel: +55 18 3636 1375. Fax: +55 18 3636 1352. E-mail:


Hide All
Almodin, C.G., Minguetti-Camara, V.C., Paixao, C.L. & Pereira, P.C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Hum. Reprod. 25, 1192–8.
Apparicio, M., Ferreira, C.R., Tata, A., Santos, V.G., Alves, A.E., Mostachio, G.Q., Pires-Butler, E.A., Motheo, T.F., Padilha, L.C., Pilau, E.J., Gozzo, F.C., Eberlin, M.N., Lo Turco, E.G., Luvoni, G.C. & Vicente, W.R. (2012). Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS). Reprod. Domest. Anim. 47, 113–7.
Arav, A., Zeron, Y., Leslie, S.B., Behboodi, E., Anderson, G.B. & Crowe, J.H. (1996). Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33, 589–99.
Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G., Liu, P. & Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–47.
Berry, K.A., Hankin, J.A., Barkley, R.M., Spraggins, J.M., Caprioli, R.M. & Murphy, R.C. (2011). MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–512.
Byrne, A.T., Southgate, J., Brison, D.R. & Leese, H.J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.
Cabral, E.C., Sevart, L., Spindola, H.M., Coelho, M.B., Sousa, I.M., Queiroz, N.C., Foglio, M.A., Eberlin, M.N. & Riveros, J.M. (2013). Pterodon pubescens oil: characterisation, certification of origin and quality control via mass spectrometry fingerprinting analysis. Phytochem. Anal. 24, 184–92.
Camargo, L.S., Boite, M.C., Wohlres-Viana, S., Mota, G.B., Serapiao, R.V., As, W.F., Viana, J.H. & Nogueira, L.A. (2011). Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 63, 256–62.
Cortes, C. & Vapnik, V. (1995). Support-Vector Networks. In: Saitta L, ed. Machine Learning 20, 273–97.
Cortezzi, S.S., Cabral, E.C., Trevisan, M.G., Ferreira, C.R., Setti, A.S., Braga, D.P., Figueira, R.E.C., Iaconelli, A., Eberlin, M.N. & Borges, E. (2013). Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 145, 453–62.
Dinnyes, A. & Nedambale, L. (2009). Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod. Fertil. Dev. 21, 4559.
Eberlin, L.S., Abdelnur, P.V., Passero, A., de Sa, G.F., Daroda, R.J., de Souza, V. & Eberlin, M.N. (2009). Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry. Analyst 134, 1652–7.
Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, 606–12.
Ferreira, C.R., Saraiva, S.A., Catharino, R.R., Garcia, J.S., Gozzo, F.C., Sanvido, G.B., Santos, L.F., Lo Turco, E.G., Pontes, J.H., Basso, A.C., Bertolla, R.P., Sartori, R., Guardieiro, M.M., Perecin, F., Meirelles, F.V., Sangalli, J.R. & Eberlin, M.N. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–27.
Ferreira, C.R., Eberlin, L.S., Hallett, J.E. & Cooks, R.G. (2012). Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J. Mass Spectrom. 47, 2933.
Fuchs, B., Süss, R. & Schiller, J. (2011). An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 50, 132.
Gardner, D.K. (2008). Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod. Fertil. Dev. 20, 918.
Hankin, J.A. & Murphy, R.C. (2010). Relationship between 392 MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal. Chem. 82, 8476–84.
Horvath, G. & Seidel, Jr., G.E. (2006). Vitrification of bovine oocytes after treatment with cholesterol-loaded methyl-β-cyclodextrin. Theriogenology 66, 1026–33.
Huwiler, A., Kolter, T., Pfeilschifter, J. & Sandhoff, K. (2000). Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta 1485, 6399.
Kaplan, M.R. & Simoni, R.D. (1985). Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–5.
Kim, J.Y., Kinoshita, M., Ohnishi, M. & Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–8.
Lapa, M., Marques, C.C., Alves, S.P., Vasques, M.I., Baptista, M.C., Carvalhais, I., Silva Pereira, M., Horta, A.E., Bessa, R.J. & Pereira, R.M. (2011). Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod. Domest. Anim. 46, 904–10.
Leibo, S.P. (1981). Preservation of ova and embryos by freezing. In New Technologies in Animal Breeding (eds Brackett, B.G., Seidel, G.E. Jr & Seidel, S.M.), pp. 127–39. New York: Academic Press.
McKeegan, P.J. & Sturmey, R.G. (2011). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 5967.
Merrill, A.H., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A. & Wang, E. (1997). Sphingolipids—the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208–25.
Paula-Lopes, F.F. & Hansen, P.J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–77.
Pereira, R.M., Baptista, M.C., Vasques, M.I., Horta, A.E., Portugal, P.V., Bessa, R.J., Silva, J.C., Pereira, M.S. & Marques, C.C. (2007). Cryosurvival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t,12c CLA). Anim. Reprod. Sci. 98, 293301.
Rocha-Frigoni, N.A.S., Leão, B.C.S., Nogueira, É., Accorsi, M.F. & Mingoti, G.Z. (2014). Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reprod. Fertil. Dev. 26, 797805.
Räty, M., Ketoja, E., Pitkänen, T., Ahola, V., Kananen, K. & Peippo, J. (2011). In vitro maturation supplements affect developmental competence of bovine cumulus–oocyte complexes and embryo quality after vitrification. Cryobiology 63, 245–55.
Saraiva, S.A., Cabral, E.C., Eberlin, M.N. & Catharino, R.R. (2009). Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. J. Agric. Food Chem. 57, 4030–4.
Seidel, G.E. Jr. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–35.
Sturmey, R.G., Reis, A., Leese, H.J. & McEvoy, T.G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–8.
Sudano, M.J., Paschoal, D.M., Rascado, T.A.S., Magalhães, L.C., Crocomo, L.F., de Lima-Neto, J.F. & Landim-Alvarenga, F.A.C. (2011). Lipid content and apoptosis of in vitro produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology 75, 1211–20.
Sudano, M.J., Santos, V.G., Tata, A., Ferreira, C.R., Paschoal, D.M., Machado, R., Buratini, J., Eberlin, M.N. & Landim-Alvarenga, F.D. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro and in vivo-produced blastocysts. Biol. Reprod. 87, 1211–20.
Tata, A., Sudano, M.J., Santos, V.G., Landim-Alvarenga, F.D., Ferreira, C.R. & Eberlin, M.N. (2013). Optimal single-embryo mass spectrometry fingerprinting. J. Mass Spectrom. 48, 844–9.
Vajta, G., Rindom, N., Peura, T.T., Holm, P., Greve, T. & Callesen, H. (1999). The effect of media, serum and temperature on in vitro survival of bovine blastocysts after open pulled straw (OPS) vitrification. Theriogenology 52, 939–48.
Van Meer, G., Voelker, D.R. & Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–24.
Vance, J.E. & Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 1831, 543–54.
Wiegmann, K., Schütze, S., Kampen, E., Himmler, A., Machleidt, T. & Krönke, M. (1992). Human 55-kDa receptor for tumor necrosis factor coupled to signal transduction cascades. J. Biol. Chem. 267, 79978001.
Wold, S., Esbensen, K. & Geladi, P. (1987). Principal component analysis. In Chemometrics and Intelligent Laboratory Systems, pp. 3752. Amsterdam: Elsevier Science Publishers.
Zeron, Y., Sklan, D. & Arav, A. (2002). Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol. Reprod. Dev. 61, 271–8.


Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos

  • Beatriz C. S. Leão (a1), Nathália A. S. Rocha-Frigoni (a1), Elaine C. Cabral (a2), Marcos F. Franco (a2), Christina R. Ferreira (a2), Marcos N. Eberlin (a2), Paulo R. Filgueiras (a2) and Gisele Z. Mingoti (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed