Skip to main content Accessibility help

Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation

  • Peter L. Pfeffer (a1) (a2), Craig S. Smith (a2) (a3), Paul Maclean (a2) and Debra K. Berg (a2)


In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation.


Corresponding author

All correspondence to: P.L. Pfeffer. School of Biological Science, Victoria University of Wellington, Wellington, New Zealand. Tel: +64 4 4637462. Fax: +64 4 4635331. E-mail:


Hide All
Acampora, D., Di Giovannantonio, L.G. & Simeone, A. (2013). Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 140, 4355.
Andersson, O., Bertolino, P. & Ibanez, C.F. (2007). Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev. Biol. 311, 500–11.
Andre, P., Song, H., Kim, W., Kispert, A. & Yang, Y. (2015). Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 142, 1516–27.
Arnold, S.J. & Robertson, E.J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91103.
Arnold, S.J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B.G. & Kemler, R. (2000). Brachyury is a target gene of the Wnt/beta-catenin signalling pathway. Mech. Dev. 91, 249–58.
Artus, J., Panthier, J.J. & Hadjantonakis, A.K. (2010). A role for PDGF signalling in expansion of the extraembryonic endoderm lineage of the mouse blastocyst. Development 137, 3361–72.
Ayalon, N. (1978). A review of embryonic mortality in cattle. J. Reprod. Fertil. 54, 483–93.
Berg, D.K., Smith, C.S., Pearton, D.J., Wells, D.N., Broadhurst, R., Donnison, M. & Pfeffer, P.L. (2011). Trophectoderm lineage determination in cattle. Dev. Cell. 20, 244–55.
Berg, D.K., van Leeuwen, J., Beaumont, S., Berg, M. & Pfeffer, P.L. (2010). Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology 73, 250–60.
Betteridge, K.J. & Flechon, J.E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29, 155–87.
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. & Young, R.A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–56.
Brewer, J.R., Molotkov, A., Mazot, P., Hoch, R.V. & Soriano, P. (2015). Fgfr1 regulates development through the combinatorial use of signalling proteins. Genes Dev. 29, 1863–74.
Brown, K., Legros, S., Artus, J., Doss, M.X., Khanin, R., Hadjantonakis, A.K. & Foley, A. (2010). A comparative analysis of extraembryonic endoderm cell lines. PLoS One 5, e12016.
Crossley, P.H. & Martin, G.R. (1995). The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–51.
Diskin, M.G., Parr, M.H. & Morris, D.G. (2011). Embryo death in cattle: an update. Reprod. Fertil. Dev. 24, 244–51.
Dodt, M., Roehr, J.T., Ahmed, R. & Dieterich, C. (2012). FLEXBAR − flexible barcode and adapter processing for next-generation sequencing platforms. Biology (Basel) 1, 895905.
Dunn, S.J., Martello, G., Yordanov, B., Emmott, S. & Smith, A.G. (2014). Defining an essential transcription factor program for naive pluripotency. Science 344, 1156–60.
Ewen, K.A. & Koopman, P. (2010). Mouse germ cell development: From specification to sex determination. Mol. Cell. Endocrinol. 323, 7693.
Familari, M. (2006). Characteristics of the endoderm: embryonic and extraembryonic in mouse. Sci. World J. 6, 1815–27.
Hart, A.H., Hartley, L., Sourris, K., Stadler, E.S., Li, R., Stanley, E.G., Tam, P.P., Elefanty, A.G. & Robb, L. (2002). Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129, 3597–608.
Hart, A.H., Willson, T.A., Wong, M., Parker, K. & Robb, L. (2005). Transcriptional regulation of the homeobox gene Mixl1 by TGF-beta and FoxH1. Biochem. Biophys. Res. Commun. 333, 1361–9.
Kaufman, M.H. (1995). The Atlas of Mouse Development, Academic Press, London.
Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–60.
Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R. & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–5.
Lu, C.C., Brennan, J. & Robertson, E.J. (2001). From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev. 11, 384–92.
Maddox-Hyttel, P., Alexopoulos, N.I., Vajta, G., Lewis, I., Rogers, P., Cann, L., Callesen, H., Tveden-Nyborg, P. & Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–23.
Magnúsdóttir, E., Dietmann, S., Murakami, K., Günesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B. & Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat. Cell Biol. 15, 905–15.
Magnúsdóttir, E., Gillich, A., Grabole, N. & Surani, M.A. (2012). Combinatorial control of cell fate and reprogramming in the mammalian germline. Curr. Opin. Genet. Dev. 22, 466–74.
Mamo, S., Mehta, J.P., McGettigan, P., Fair, T., Spencer, T.E., Bazer, F.W. & Lonergan, P. (2011). RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 85, 1143–51.
Maye, P., Becker, S., Siemen, H., Thorne, J., Byrd, N., Carpentino, J. & Grabel, L. (2004). Hedgehog signalling is required for the differentiation of ES cells into neurectoderm. Dev. Biol. 265, 276–90.
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Method. 5, 621–8.
Moustakas, A. & Heldin, C.H. (2009). The regulation of TGFbeta signal transduction. Development 136, 3699– 714.
Nagatomo, H., Kagawa, S., Kishi, Y., Takuma, T., Sada, A., Yamanaka, K., Abe, Y., Wada, Y., Takahashi, M., Kono, T. & Kawahara, M. (2013). Transcriptional wiring for establishing cell lineage specification at the blastocyst stage in cattle. Biol. Reprod. 88, 158.
Niswander, L. & Martin, G.R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–68.
Ogura, Y., Takakura, N., Yoshida, H. & Nishikawa, S.I. (1998). Essential role of platelet-derived growth factor receptor alpha in the development of the intraplacental yolk sac/sinus of Duval in mouse placenta. Biol. Reprod. 58, 6572.
Ornitz, D.M., Xu, J., Colvin, J.S., McEwen, D.G., MacArthur, C.A., Coulier, F., Gao, G. & Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–7.
Ozawa, M., Sakatani, M., Yao, J., Shanker, S., Yu, F., Yamashita, R., Wakabayashi, S., Nakai, K., Dobbs, K.B., Sudano, M.J., Farmerie, W.G. & Hansen, P.J. (2012). Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev. Biol. 12, 33.
Pearton, D.J., Smith, C.S., Redgate, E., van Leeuwen, J., Donnison, M. & Pfeffer, P.L. (2014). Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev. Biol. 392, 344–57.
Pfeffer, P.L. (2014). Lineage commitment in the mammalian preimplantation embryo. In Reproduction in Domestic Ruminants vol. 8 (eds Juengel, J., Miyamoto, A., & Webb, R.) pp. 89103. Context, Obihiro, Japan.
Pfeffer, P.L. & Pearton, D.J. (2012). Trophoblast development. Reproduction 143, 231–46.
Phillips, N.E., Manning, C.S., Pettini, T., Biga, V., Marinopoulou, E., Stanley, P., Boyd, J., Bagnall, J., Paszek, P., Spiller, D.G., White, M.R.H., Goodfellow, M., Galla, T., Rattray, M. & Papalopulu, N. (2016). Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation. eLife 5, e16118.
R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Moss, J., Graham, L., Burton, N., Hill, B., Rao, J., Baldock, R.A. & Armit, C. (2014). EMAGE mouse embryo spatial gene expression database: 2014 update. Nucl. Acid Res. 42, D835–44.
Rielland, M., Hue, I., Renard, J.P. & Alice, J. (2008). Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev. Biol. 322, 110.
Roberts, R.M. & Fisher, S.J. (2011). Trophoblast stem cells. Biol. Reprod. 84, 412–21.
Robertson, E.J. (2014). Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell. Dev. Biol. 32, 73–9.
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–40.
Sartori, R., Bastos, M.R. & Wiltbank, M.C. (2010). Factors affecting fertilization and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22, 151–8.
Smith, C., Berg, D., Beaumont, S., Standley, N.T., Wells, D.N. & Pfeffer, P.L. (2007). Simultaneous gene quantitation of multiple genes in individual bovine nuclear transfer blastocysts. Reproduction 133, 231–42.
Smith, C.S., Berg, D.K., Berg, M. & Pfeffer, P.L. (2010). Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle. Cell Reprogram. 12, 699707.
Sun, X., Meyers, E.N., Lewandoski, M. & Martin, G.R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–46.
Tagashira, S., Harada, H., Katsumata, T., Itoh, N. & Nakatsuka, M. (1997). Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing. Gene 197, 399404.
Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–5.
Taniguchi, F., Harada, T., Yoshida, S., Iwabe, T., Onohara, Y., Tanikawa, M. & Terakawa, N. (1998). Paracrine effects of bFGF and KGF on the process of mouse blastocyst implantation. Mol. Reprod. Dev. 50, 5462.
Trapnell, C., Pachter, L. & Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–11.
Tsubooka, N., Ichisaka, T., Okita, K., Takahashi, K., Nakagawa, M. & Yamanaka, S. (2009). Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells 14, 683–94.
van Leeuwen, J., Berg, D.K. & Pfeffer, P.L. (2015). Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One 10, e0129787.
Vejlsted, M., Du, Y., Vajta, G. & Maddox-Hyttel, P. (2006). Post-hatching development of the porcine and bovine embryo—defining criteria for expected development in vivo and in vitro . Theriogenology 65, 153–65.
Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R.E. & Stern, C.D. (2007). The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–52.
Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. (2012). Distinct lineage specification roles for NANOG, OCT 4, and SOX2 in human embryonic stem cells. Cell. Stem Cell 10, 440–54.
Wooding, F.B. (1992). Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13, 101–13.
Wordinger, R.J., Smith, K.J., Bell, C. & Chang, I.F. (1994). The immunolocalization of basic fibroblast growth factor in the mouse uterus during the initial stages of embryo implantation. Growth Factors 11, 175–86.
Yamaji, M., Seki, Y., Kurimoto, K., Yabuta, Y., Yuasa, M., Shigeta, M., Yamanaka, K., Ohinata, Y. & Saitou, M. (2008). Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–22.
Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., Lancet, D. & Shmueli, O. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–9.
Youngren, K.K., Coveney, D., Peng, X., Bhattacharya, C., Schmidt, L.S., Nickerson, M.L., Lamb, B.T., Deng, J.M., Behringer, R.R., Capel, B., Rubin, E.M., Nadeau, J.H. & Matin, A. (2005). The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435, 360–4.
Zhang, H. & Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–86.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Pfeffer supplementary material
Table S1

 Unknown (1.8 MB)
1.8 MB
Supplementary materials

Pfeffer supplementary material
Figure S1

 PDF (6.8 MB)
6.8 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed