Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T05:04:00.989Z Has data issue: false hasContentIssue false

Gap junction communication and cell adhesion in development

Published online by Cambridge University Press:  26 September 2008

Robert L. DeHaan
Affiliation:
Department of Anatomy and Cell Biology, Emory University, Atlanta, GA 30322, USA

Abstract

During the past decade growing evidence has suggested that cell-cell communication via gap junctions is crucial for early developmental processes (Warner et al., 1984; Guthrie & Gilula, 1989; Serras et al., 1989). It has been shown that embryos of mice (Kalimi & Lo, 1988), teleosts (Kimmel et al., 1984), insects (Warner & Lawrence, 1982; Ruangvoravat & Lo, 1992) and molluscs (Serras et al., 1989) become regionally organized into restricted domains of junctionally connected cells that share developmental potential. In the mouse gastrula, for example, dye-coupling experiments have demonstrated that cells within a developmental compartment have a high degree of coupling whereas cells across compartmental boundaries have reduced coupling (Kalimi & Lo, 1988). Classic experiments (Townes & Holtfretter, 1955; Steinberg, 1963) demonstrated that as cells begin to differentiate along common pathways, they develop selective adhesion properties and the ability to sort themselves from unlike neighbours (for review see Edelman 1988; Edelman et al., 1990). More recently a multitude of specific cell adhesion molecules (CAMs) have been identified that mediate these processes and trigger the cytoplasmic events that drive further differentiation (Edelman et al., 1990; Albelda, 1991; Geiger & Ayalon, 1992).

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albelda, S. (1991). Endothelial and epithelial cell adhesion molecules. Am. J. Cell Mol. Biol. 4, 195203.CrossRefGoogle ScholarPubMed
Albelda, S. & Buck, C. (1990). Integrins and other cell adhesion molecules. FASEB J. 4, 2868–80.CrossRefGoogle ScholarPubMed
Allen, F., Tickle, C. & Warner, A. (1990). The role of gap junctions in patterning of the chick limb bud. Development 108, 623–34.CrossRefGoogle ScholarPubMed
Balogh, S., Naus, C.C.G. & Merrifield, P.A. (1993). Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev. Biol. 155, 351–60.CrossRefGoogle ScholarPubMed
Bastide, B., Neyses, L., Ganten, D., Paul, M., Wileck, K. & Traub, O. (1993). Gap junction protein Connexin40 is preferenitially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ. Res. 73, 1138–49.CrossRefGoogle ScholarPubMed
Becker, D.L., Evans, W.H., Green, C.R. & Warner, A.E. (1993). Functonal block of gap junctional communication using antipeptide antibodies: molecular localization of the binding sites. In Proceedings of (1993) International Meething on Gap junctions. 7 (abstract).Google Scholar
Bennet, M.V.L. & verselis, V.K. (1992). Biophysics of gap junctions. Semin. Cell Biol. 3, 2947.CrossRefGoogle Scholar
Bennett, M.V.L., Barrio, L.C., Bargiello, T.A., Spray, D.C., Hertzberg, E. & Saez, J.C. (1991). Gap junctions: new tools, new answers, new questions. Neuron 6, 305–20.CrossRefGoogle ScholarPubMed
Bergoffen, J., Scherer, S.S., Wang, S., Scott, M.O., Bone, L.J., Paul, D.L., Chen, K., Lensch, M.W., Chance, P.F. & Fishbeck, K.H. (1993). Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039–42.CrossRefGoogle ScholarPubMed
Bevilacqua, A., Loch-Caruso, R. & Erickson, R.P. (1989). Abnormal development and dye coupling produced by antisense RNA to gap junction protein in mouse preimplantation embryos. Proc. Natl. Acad. Sci. USA 86, 5444–8.CrossRefGoogle ScholarPubMed
Beyer, E.C. (1993). Gap juntions. Int. Rev. Cytol. 137C, 137.Google Scholar
Beyer, E.C., Paul, D.L. & Goodenough, D.A. (1990). Connexin family of gap junction proteins. J. Membrane Biol. 116, 187–94.CrossRefGoogle ScholarPubMed
Britz-Cunningham, S.H., Shah, M.M., Mazrtinez, A.M. & Fletcher, W.H. (1993). Mutations in the Connexin43 (α1) gene are associated with defects in heart development. Mol. Biol. Cell. 4 (Suppl.), 329a.Google Scholar
Chen, Y.-H., & DeHaan, R.L. (1993).Immunolocalization of Cx42, Cx43, and Cx45 proteins between embryonic chick ventricle myocytes. Mol. Biol Cell. 4 (Suppl.), 327a.Google Scholar
Chuong, C.-M. & Edelman, G. (1985). Expression of cell adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers. J. Cell Biol. 101, 1009–26.CrossRefGoogle ScholarPubMed
Coelho, C.N.D. & Kosher, R.A. (1991). A gradient of gap junctional communication along the anterior-posterior axis of the developing chick limb bud. Dev. Biol. 148, 529–35.CrossRefGoogle ScholarPubMed
Cooper, K.Mathias, R.T. & Rae, J.L. (1991). The physiology of les junctions. In Biophysics of Gap Junction Channels ed. Peracchia, C., pp 5774. Boca Raton: CRC press.Google Scholar
Dermitzel, R. & Spray, D.C. (1993). Gap junctions in the brain: where, what type, how many and why?. Trends Neurosci. 16, 186–92.CrossRefGoogle Scholar
Dermietzel, R.Hwang, T.K. & Spray, D.C. (1990). The gap junction family: structure, function and chemistry. Anat. Embryol. 182 517–28.CrossRefGoogle Scholar
Ducibella, T., Albertini, T., Anderson, E. & Biggers, J.D. (1975). The preimplantation mammalian embryo: characterization of intercellular junction and their appearance during development. Dev. Biol. 45, 231–50.CrossRefGoogle ScholarPubMed
Edelman, G.M. (1988). Morphoregulatory molecules. Biochemistry 17, 3533–43.CrossRefGoogle Scholar
Edelman, G.M., Cunningham, B.A. & Thiery, J.P. (eds). (1990). Morphoregulatory Molecules. Indianapolis IN: Neurosciences Institutes.Google Scholar
Fraser, S.E., Green, C.R., Bode, H.R. & Gilula, N.B. (1987). Selective disruption of gap junctional communication interferes with a patterning process in Hydra. Science 237, 4955.CrossRefGoogle ScholarPubMed
Fromaget, C., El Aoumari, A., Dupont, E., Briand, J.P. & Gros, D. (1990). Changes in the expression of Connexin 43, a cardiac gap junction channel protein, during mous heart development. J. Mol. Cell Cardiol. 22, 1245–58.CrossRefGoogle Scholar
Geiger, B. & Ayalon, O. (1992). Cadherins. Annu. Rev. Biol. 8, 307–32.CrossRefGoogle ScholarPubMed
Goodall, H. & Johnson, M.H. (1984). The nature of intercellular coupling within the preimplaantation mouse embryo. J. Embryol. Exp. Morphol. 79, 5376.Google ScholarPubMed
Goodall, H. & Maro, B. (1986). Major loss of junctional coupling during mistosis in early mouse embryos. J. Cell Biol. 102, 568–75.CrossRefGoogle Scholar
Goodenough, D.A., Yu, K., Gimlich, R. & Paul, D.L. (1993). Blockage of communication may result in loss of blastomere adhesion in the Xenopus embryo. In Twelfth international congress, International Society for Developmental Biology, p. 112.Google Scholar
Gourdie, R.G., Green, C., Severs, N.J. & Thompson, R.B. (1992). Immunolabeling patterns of gap junction connexins in the developing and mature rat heart. Anat. Embryol. 185, 363–78.CrossRefGoogle ScholarPubMed
Gourdie, R.G., Green, C.R., Severs, N.J., Anderson, R.H. & Thompson, R.P. (1993). Evidence for a distinct gap junctional phenotype in ventricular conduction tissuse of the developing and mature avian heart. Circ. Res 72, 278–89.CrossRefGoogle Scholar
Green, C.R. & Severs, N.J. (1993). Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry 99, 105–20.CrossRefGoogle ScholarPubMed
Guthrie, S.C. & Gilula, N.B. (1989). Gap junctional communication and development. Trends Neurosci. 12, 1216.CrossRefGoogle ScholarPubMed
Hall, J.E., Zampigihi, G.A. & Davis, R.M. (eds). (1993). Gap Junctions. Amsterdam. Elsevier.Google Scholar
Hyafil, F.Morello, D., Babinet, C. & Jacob, F. (1980). A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21, 927–34.CrossRefGoogle ScholarPubMed
Hyafil, F., Babinet, C. & Jacob, F. (1981). Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 26, 447–54.CrossRefGoogle Scholar
Jones, C. & DeHaan, R.L. (1993). Regional expression of mRNA for Cx42 and Cx43 in the embryonic chick heart. Mol. Biol. Cell 4 (Suppl.), 328a.Google Scholar
Kalimi, G.H. & Lo, C.W. (1988). Communication compartments in the gastrulating mouse embryo. J. Cell Biol. 107. 241–55.CrossRefGoogle ScholarPubMed
Kam, E. & Hodgins, M.B. (1992). Communication compartments in hair follicles and their implications in differentiative control. Development 114, 389–93.CrossRefGoogle ScholarPubMed
Kanter, H.L., Saffitz, J.E. & Beyer, E.C. (1992). Cardiac myocytes express multiple gap junction proteins. Circ. Res. 70. 438–44.CrossRefGoogle ScholarPubMed
Kanter, H.L., Laing, J.G., Beyer, E.C., Green, K.G.Saffitz, J.E. (1993). Multiple colocalize in canine ventricular myocyte gap juntions. Circ. Res. 73, 344–50.CrossRefGoogle Scholar
Keane, R.W., Mehat, P.P., Rose, B., Honig, L.S., Loewensteni, W.R. & Rutishauser, U. (1988). Neural differentiation, NCAM-mediated adhesion and gap junctional communication in neuroectoderm: a study in vitro. J. Cell Biol. 106, 1307–19.CrossRefGoogle ScholarPubMed
Kimmel, C.B., Spray, D.C. & Bennett, M.V.L. (1984). Developmental uncoupling between blastoderm and yolk cell in the embryo of the teleost Fundulus. Dev. Biol. 102, 483–7.CrossRefGoogle ScholarPubMed
Lee, S.Gilula, N.B. & Warner, A.E. (1987). Gap junctional communication and compaction during preimplantation stages of mouse development. Cell 51, 851–60.CrossRefGoogle ScholarPubMed
Magnusen, T.Demsey, A. & Stackpole, C.W. (1977). Characterization of intercellular junctions in the preimplanatation mouse embryo by freeze-fracture and thin section electron microscopy. Dev. Biol. 61, 252–61.CrossRefGoogle Scholar
McMahon, D.G., Knapp, A.G. & Dowling, J.E. (1989). Horizontal cell gap junctions: single channel conductance and modulation by dopamine. Proc Natl. Acad. Sci. USA 86, 6739–43.Google ScholarPubMed
Meyer, R.A., Laird, D.W., Revel, J.-P. & Johnson, R.G. (1992). Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119, 179–89.CrossRefGoogle Scholar
Musil, L.S., Beyer, E.C. & Goodenough, D.A. (1990 a). Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J. Membrane Biol. 116, 163–75.CrossRefGoogle Scholar
Musil, L.S., Cunningham, B.A., Edelman, G.M. & Goodenough, D.A. (1990 b). Differential phosphorylation of the gap junction protein, connexin43, in junctional communication-competent and -deficient cell lines. J. Cell Biol. 111, 2077–88.CrossRefGoogle Scholar
Nagajski, D.J.,Guthrie, S.C., Ford, C.C. & Warner, A.E. (1989). The correlation between patterns of dye transfer through gap junctions and future developmental fate in Xenopus: the consequences of UV irradiation and lithium treatment. Development 105, 747–57.CrossRefGoogle Scholar
Nishi, M., Kumar, N.M. & Gilula, N.B. (1991). Developmental regulation of gap junction gene expression during mouse embryonic development. Dev. Biol. 146, 117–30.CrossRefGoogle ScholarPubMed
Nose, A., Nagafuchi, A. & Takeichi, A. (1988). Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 9931001.CrossRefGoogle ScholarPubMed
Page, E. (1992). Cardiac gap junctions. In The Heart and Cardiovascular System, ed. Fozzard, H.A.Haber, E.Jennings, R.B.Katz, A.M. & Moran, H.E. pp. 1003–48. New York: Raven Press.Google Scholar
Paul, D.L. (1986). Molecular cloning of cDNA for rat liver gap junction protein. J. Cell Biol. 103, 123–34.CrossRefGoogle ScholarPubMed
Paul, D.L., Yu, K. & Bruzzone, R. (1993). Expression of a dominant negative inhibitor of intercellular communication in Xenopus embryos causes delamination and extrusion of cells early in gastrulation. Mol. Biol. Cell. 4 (Suppl.), 350a.Google Scholar
Risek, B., Guthrie, S., Kumar, N.M. & Gilula, N.B. (1990). Modulation of gap junction transcript and protein expression during pregnancy in the rat. J. Cell Biol. 110, 269–82.CrossRefGoogle ScholarPubMed
Ruangvoravat, C.P. & Lo, C.W. (1992). Restrictions in gap junctional communication in the Drosophila larval epidermis. Dev. Dynamics 193, 7082.CrossRefGoogle ScholarPubMed
Serras, F., Damen, P., Dictus, W.J.A.G., Notenboom, R.G.E. & Van den Beggelaar, J.A.M. (1989). Communication compartments in the ectoderm of embryos of Patella vulgata. Rouxs Arch. Dev. Biol. 198, 191200.CrossRefGoogle ScholarPubMed
Spach, M.S. & Dolber, P.C. (1986). Relating extracellular potentials and their derivatives to anisoptropic propagation at a microscopic level in human cardiac muscle: evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ. Res. 58, 356–71.CrossRefGoogle Scholar
Steinberg, M. (1963). Reconstruction of tissues by dissociated cells. Science 141, 401–5.CrossRefGoogle ScholarPubMed
Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–5.CrossRefGoogle ScholarPubMed
Thiery, J.P., Boyer, B., Tucker, G., Gavrilovic, J. & Valles, A.M. (1988). Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis. Ciba Found. Symp. 141, 4874.Google ScholarPubMed
Townes, P. & Holtfretter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53120.CrossRefGoogle Scholar
Trinkaus, J.P. (1963). The cellular basis of Fundulus epiboly. Dev. Biol. 7, 513–32.CrossRefGoogle Scholar
Vestweber, D., Gossler, A., Boller, K. & Kemler, R. (1987). Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124, 451–6.CrossRefGoogle ScholarPubMed
Volk, R., Cohen, O. & Geiger, B. (1987). Formation of heterotypic adherens-type junctions between L.-CAM-containing liver cells and A-Cam-containing lens cells. Cell 50, 987–94.CrossRefGoogle ScholarPubMed
Warner, A.E., Guthrie, S.C. & Gilula, N.B. (1984). Antibodies to gap junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311, 127–31.CrossRefGoogle ScholarPubMed
Warner, A.E. & Lawrence, P.A. (1982). Permeability of gap junctions at the segmental border in insect epidermis. Cell 28, 243–52.CrossRefGoogle ScholarPubMed
Willecke, K., Hennemann, H., Dahl, E., Jungbluth, S. & Heynkes, R. (1991). The diversity of connexin genes encoding gap junction proteins. Eur. J. Cell Biol. 56, 17.Google Scholar
Willecke, K., Hennemann, H., Dahl, E. & Jungbluth, S. (1993). The mouse connexin gene family. In Gap Junctions, ed. Hall, J.E.Zampighi, G.A. & Davis, R.M., pp. 33–7. Amsterdam: Elsevier.CrossRefGoogle Scholar
Winterhager, E., Stutenkemper, R., Traub, O., Beyer, E. & Willecke, K. (1991). Expression of different connexin genes in rat uterus during decidualization and at term. Eur. J. Cell Biol. 55, 133–12.Google ScholarPubMed
Yeager, M. (1993). Structure and design of cardiac gapjunction membrane channels. In Gap Junctions, ed. Hall, J.E., Zampighi, G.A. & Davis, R.M., pp. 4755. Amsterdam: Elsevier.CrossRefGoogle Scholar
Yeager, M. & Gilula, N.B. 1992). Membrane topology and quaternary structure of cardiac gap junction ion channels. J. Mol. Biol. 223; 929–48.CrossRefGoogle ScholarPubMed
Young, J.D.-E., Cohn, Z.A. & Gilula, N.B. (1987). Functional assembly of gap junction conductance in lipid bilayers: demonstration that the major 27 kD protein forms the junctional channel. Cell 48, 733–43.CrossRefGoogle ScholarPubMed